Abstract

We introduce the spi calculus, an extension of the pi calculus designed for the description and analysis of cryptographic protocols. We show how to use the spi calculus, particularly for studying authentication protocols. The pi calculus (without extension) suffices for some abstract protocols; the spi calculus enables us to consider cryptographic issues in more detail. We represent protocols as processes in the spi calculus and state their security properties in terms of coarse-grained notions of protocol equivalence.
Contents

1 Security and the Pi Calculus 4

2 Protocols using Restricted Channels 6
 2.1 Basics ... 6
 2.2 Outline of the Pi Calculus 7
 2.3 Examples using Restricted Channels 9
 2.3.1 A first example 9
 2.3.2 An example with channel establishment 12
 2.3.3 Discussion 13

3 Protocols using Cryptography 14
 3.1 The Spi Calculus with Shared-Key Cryptography 14
 3.2 Examples using Shared-Key Cryptography 16
 3.2.1 A first cryptographic example 16
 3.2.2 An example with key establishment 18
 3.2.3 A complete authentication example (with a flaw) ... 19
 3.2.4 A complete authentication example (repaired) 23
 3.2.5 Discussion 26

4 Formal Semantics of the Spi Calculus 26
 4.1 The Reaction Relation 27
 4.2 Testing Equivalence 29

5 Semantic Notions Useful in Proofs 31
 5.1 The Commitment Relation 31
 5.2 Some Auxiliary Equivalences 33
 5.2.1 Strong bisimilarity 33
 5.2.2 Barbed equivalence 34
 5.2.3 Barbed congruence 35
 5.3 The Underpinning Relation 37

6 Proofs for the Examples 39
 6.1 Proofs for the Example of Section 2.3.1 39
 6.2 Proofs for the Example of Section 3.2.1 41
 6.3 Proofs for the Example of Section 3.2.2 47
 6.4 Formalisation of the Attack of Section 3.2.3 58
 6.5 Proofs for the Example of Section 3.2.4 59
7 Further Cryptographic Primitives 81
 7.1 Hashing ... 81
 7.2 Public-Key Encryption and Digital Signatures 81

8 Conclusions 84

Acknowledgements 84

Appendices 85

A Encoding Encryption in the Pi Calculus 85

B Proofs about Commitment 86

C Proofs about Replication 91

D Proofs about Equivalences 96
 D.1 Testing Equivalence 96
 D.2 Barbed Equivalence 102
 D.3 Barbed Congruence 105

E Proofs about Underpinning 108

References 112
1 Security and the Pi Calculus

The spi calculus is an extension of the pi calculus [MPW92] with cryptographic primitives. It is designed for the description and analysis of security protocols, such as those for authentication and for electronic commerce. These protocols rely on cryptography and on communication channels with properties like authenticity and privacy. Accordingly, cryptographic operations and communication through channels are the main ingredients of the spi calculus.

We use the pi calculus (without extension) for describing protocols at an abstract level. The pi calculus primitives for channels are simple but powerful. Channels can be created and passed, for example from authentication servers to clients. The scoping rules of the pi calculus guarantee that the environment of a protocol (the attacker) cannot access a channel that it is not explicitly given; scoping is thus the basis of security. In sum, the pi calculus appears as a fairly convenient calculus of protocols for secure communication.

However, the pi calculus does not express the cryptographic operations that are commonly used for implementing channels in distributed systems: it does not include any constructs for encryption and decryption, and these do not seem easy to represent. Since the use of cryptography is notoriously error-prone, we prefer not to abstract it away. We define the spi calculus in order to permit an explicit representation of the use of cryptography in protocols.

There are now many other notations for describing security protocols. Some, which have long been used in the authentication literature, have a fairly clear connection to the intended implementations of those protocols (see, e.g., [NS78, Lie93]). Their main shortcoming is that they do not provide a precise and solid basis for reasoning about protocols. Other notations (e.g., [BAN89]) are more formal, but their relation to implementations may be more tenuous or subtle. The spi calculus is a middle ground: it is directly executable and it has a precise semantics.

Because the semantics of the spi calculus is not only precise but intelligible, the spi calculus provides a setting for analysing protocols. Specifically, we can express security guarantees as equivalences between spi calculus processes. For example, we can say that a protocol keeps secret a piece of data X by stating that the protocol with X is equivalent to the protocol with X', for any X'. Here, equivalence means equivalence in the eyes of an arbitrary environment. The environment can interact with the protocol, perhaps al-
tempting to create confusion between different messages or sessions. This
definition of equivalence yields the desired properties for our security appli-
cations. (Interestingly, we cannot take the standard bisimilarity relation as
our notion of equivalence.) Moreover, equivalence is not too hard to prove;
we demonstrate this by carrying out the analysis of a few small protocols.

Although the definition of equivalence makes reference to the environ-
ment, we do not need to give a model of the environment explicitly. This
is one of the main advantages of our approach. Writing such a model can
be tedious and can lead to new arbitrariness and error. In particular, it is
always difficult to express that the environment can invent random numbers
but is not lucky enough to guess the random secrets on which a protocol
depends. We resolve this conflict by letting the environment be an arbitrary
spi calculus process.

Our approach has some similarities with other recent approaches for
reasoning about protocols. Like work based on temporal logics or pro-
cess algebras (e.g., [GM95, Low96, Sch96]), our method builds on a stan-
dard concurrency formalism; this has obvious advantages but it also implies
that our method is less intuitive than some based on ad hoc formalisms
(e.g., [BAN89]). As in some modal logics (e.g., [ABLP93, LABW92]), we em-
phasise reasoning about channels and their utterances. As in state-transition
models (e.g., [DY81, MCF87, Mil95a, Kem89, Mea92]), we are interested in
characterising the knowledge of an environment. The unique features of our
approach are its reliance on the powerful scoping constructs of the pi calculus;
the radical definition of the environment as an arbitrary spi calculus process;
and the representation of security properties, both integrity and secrecy, as
equivalences.

Our model of protocols is simpler, but poorer, than some models de-
veloped for informal mathematical arguments (e.g., [BR95]) because the spi
calculus does not include any notion of probability or complexity. It would
be interesting to bridge the gap between the spi calculus and those models,
perhaps by giving a probabilistic interpretation for our results.

Contents of this Paper

Section 2 introduces the pi calculus and our method of specifying authenticity
and secrecy properties as equations. Section 3 extends the pi calculus with
primitives for shared-key cryptography. Sections 4 and 5 define the formal
semantics of the spi calculus and associated proof techniques, respectively.
Section 6 uses these techniques in proofs of some of the properties stated earlier. Section 7 discusses how to add primitives for public-key cryptography to the pi calculus, and Section 8 offers some conclusions. The Appendices contain some proofs and several sketches of partial encodings of the spi calculus in the pi calculus.

Note

It has been said that Perl is a language that looks the same in clear and encrypted. The pi calculus, and a fortiori the spi calculus, are not too far behind Perl in this respect. If you get lost in the formal passages of the paper, the cleartext nearby may help—hopefully the informal explanations convey the gist of what is being accomplished.

2 Protocols using Restricted Channels

In this section we review the definition of the pi calculus informally. (We give a more formal presentation in Section 4.) We then introduce a new application of the pi calculus, namely its use for the study of security.

2.1 Basics

The pi calculus is a small but extremely expressive programming language. It is an important result of the search for a calculus that could serve as a foundation for concurrent computation, in the same way in which the lambda calculus is a foundation for sequential computation.

Pi calculus programs are systems of independent, parallel processes that synchronise via message-passing handshakes on named channels. The channels a process knows about determine the communication possibilities of the process. Channels may be restricted, so that only certain processes may communicate on them. In this respect the pi calculus is similar to earlier process calculi such as CSP [Hoa85] and CCS [Mil89].

What sets the pi calculus apart from earlier calculi is that the scope of a restriction—the program text in which a channel may be used—may change during computation. When a process sends a restricted channel as a message to a process outside the scope of the restriction, the scope is said to extrude, that is, it enlarges to embrace the process receiving the channel. Processes in
the pi calculus are mobile in the sense that their communication possibilities may change over time; they may learn the names of new channels via scope extrusion. Thus, a channel is a transferable capability for communication.

A central technical idea of this paper is to use the restriction operator and scope extrusion from the pi calculus as a formal model of the possession and communication of secrets, such as cryptographic keys. These features of the pi calculus are essential in our descriptions of security protocols.

2.2 Outline of the Pi Calculus

There are in fact several versions of the pi calculus. Here we review the syntax and semantics of a particular version of the pi calculus; our choices should be relatively uncontroversial. The differences with other versions are mostly orthogonal to our concerns.

We assume an infinite set of names, to be used for communication channels, and an infinite set of variables. We let m, n, p, q, and r range over names, and let x, y, and z range over variables.

The set of terms is defined by the grammar:

\[
L, M, N ::= \quad \text{terms} \\
\quad \quad n \quad \quad \quad \text{name} \\
\quad \quad (M, N) \quad \quad \text{pair} \\
\quad \quad 0 \quad \quad \quad \text{zero} \\
\quad \quad \text{suc}(M) \quad \quad \text{successor} \\
\quad \quad x \quad \quad \quad \text{variable}
\]

In the standard pi calculus, names are the only terms. For convenience we have added constructs for pairing and numbers, (M, N), 0, and suc(M), and have also distinguished variables from names. (This distinction simplifies the treatment of some equivalences.)

The set of processes is defined by the grammar:

\[
P, Q, R ::= \quad \text{processes} \\
\quad \quad \text{output} \\
\quad \quad \text{input} \\
\quad \quad \text{composition} \\
\quad \quad \text{restriction} \\
\quad \quad \text{replication} \\
\quad \quad \text{match}
\]

\[
P, Q, R ::= \quad \text{processes} \\
\quad \quad \text{output} \\
\quad \quad \text{input} \\
\quad \quad \text{composition} \\
\quad \quad \text{restriction} \\
\quad \quad \text{replication} \\
\quad \quad \text{match}
\]

\[
P, Q, R ::= \quad \text{processes} \\
\quad \quad \text{output} \\
\quad \quad \text{input} \\
\quad \quad \text{composition} \\
\quad \quad \text{restriction} \\
\quad \quad \text{replication} \\
\quad \quad \text{match}
\]
let $(x, y) = M$ in P

case M of $0 : P$ suc$(x) : Q$

In $(vn)P$, the name n is bound in P. In $M(x).P$, the variable x is bound in P. In let $(x, y) = M$ in P, the variables x and y are bound in P. In case M of $0 : P$ suc$(x) : Q$, the variable x is bound in the second branch, Q. We write $P[M/x]$ for the outcome of replacing each free occurrence of x in process P with the term M, and identify processes up to renaming of bound variables and names. We adopt the abbreviation $\overline{M}(N)$ for $\overline{M}(N).0$.

Intuitively, the constructs of the pi calculus have the following meanings:

- The basic computational step and synchronisation mechanism in the pi calculus is interaction, in which a term N is communicated from an output process to an input process via a named channel, m.

 - An output process $\overline{m}(N).P$ is ready to output on channel m. If an interaction occurs, term N is communicated on m and then process P runs.

 - An input process $m(x).P$ is ready to input from channel m. If an interaction occurs in which N is communicated on m, then process $P[N/x]$ runs.

(The general forms $\overline{M}(N).P$ and $M(x).P$ of output and input allow for the channel to be an arbitrary term M. The only useful cases are for M to be a name, or a variable that gets instantiated to a name.)

- A composition $P | Q$ behaves as processes P and Q running in parallel. Each may interact with the other on channels known to both, or with the outside world, independently of the other.

- A restriction $(vn)P$ is a process that makes a new, private name n, which may occur in P, and then behaves as P.

- A replication $!P$ behaves as an infinite number of copies of P running in parallel.

- A match $[M \text{ is } N] P$ behaves as P provided that terms M and N are the same; otherwise it is stuck, that is, it does nothing.

- The nil process 0 does nothing.
Since we added pairs and integers, we have two new process forms:

- A *pair splitting* process `let (x, y) = M in P` behaves as `P[N/x][L/y]` if term `M` is the pair `(N, L)`, and otherwise it is stuck.

- An *integer case* process `case M of 0 : P suc(x) : Q` behaves as `P` if term `M` is `0`, as `Q[N/x]` if `M` is `suc(N)`, and otherwise is stuck.

We write `P \simeq Q` to mean that the behaviours of the processes `P` and `Q` are indistinguishable. In other words, the processes `P` and `Q` may have different internal structure, but a third process `R` cannot distinguish running in parallel with `P` from running in parallel with `Q`. As far as `R` can tell, `P` and `Q` have the same properties (more precisely, the same safety properties). We define the relation `\simeq` in Section 4.2 as a form of testing equivalence. For now, it suffices to understand `\simeq` informally.

2.3 Examples using Restricted Channels

Next we show how to express some abstract security protocols in the pi calculus. In security protocols, it is common to find channels on which only a given set of principals is allowed to send data or listen. The set of principals may expand in the course of a protocol run, for example as the result of channel establishment. Remarkably, it is easy to model this property of channels in the pi calculus, via the restriction operation; the expansion of the set of principals that can access a channel corresponds to scope extrusion.

We do not provide a systematic translation from another language for describing protocols into the pi calculus, but rather show some examples of protocols written directly in the pi calculus, along with informal descriptions of the kind commonly found in the security literature. We do introduce a fairly systematic approach for stating properties of protocols as pi calculus equivalences.

2.3.1 A first example

Our first example is extremely basic. In this example, there are two principals `A` and `B` that share a channel, `c_{AB}`; only `A` and `B` can send data or listen on this channel. The protocol is simply that `A` uses `c_{AB}` for sending a single message `M` to `B`.
In informal notation, we may write this protocol as follows:

Message 1 \(A \rightarrow B : M \) on \(c_{AB} \)

A first pi calculus description of this protocol is:

\[
\begin{align*}
A(M) & \triangleq \overline{c_{AB}}(M) \\
B & \triangleq c_{AB}(x).0 \\
Inst(M) & \triangleq (\nu c_{AB})(A(M) \mid B)
\end{align*}
\]

The processes \(A(M) \) and \(B \) describe the two principals, and \(Inst(M) \) describes (one instance of) the whole protocol. The channel \(c_{AB} \) is restricted; intuitively, this achieves the effect that only \(A \) and \(B \) have access to \(c_{AB} \).

In these definitions, \(A(M) \) and \(Inst(M) \) are processes parameterised by \(M \). More formally, we say that \(A \) and \(Inst \) are abstractions, and treat the \(M \)'s on the left of \(\triangleq \) as bound parameters. Roughly, abstractions are functions that map terms to processes. (Section 5.1 contains a precise definition of abstractions.) Abstractions can of course be instantiated (applied); for example, the instantiation \(A(0) \) yields \(\overline{c_{AB}}(0) \). The standard rules of substitution govern application, forbidding parameter captures; for example, expanding \(Inst(c_{AB}) \) would require a renaming of the bound occurrence of \(c_{AB} \) in the definition of \(Inst \).

The first pi calculus description of the protocol may seem a little futile because, according to it, \(B \) does nothing with its input. A more useful and general description says that \(B \) runs a process \(F \) with its input. We revise our definitions as follows:

\[
\begin{align*}
A(M) & \triangleq \overline{c_{AB}}(M) \\
B & \triangleq c_{AB}(x).F(x) \\
Inst(M) & \triangleq (\nu c_{AB})(A(M) \mid B)
\end{align*}
\]

Informally, \(F(x) \) is simply the result of applying \(F \) to \(x \). More formally, \(F \) is an abstraction, and \(F(x) \) is an instantiation of the abstraction. We adopt the convention that the bound parameters of the protocol (in this case, \(M \), \(c_{AB} \), and \(x \)) cannot occur free in \(F \).

This protocol has two important properties:

- Authenticity (or integrity): \(B \) always applies \(F \) to the message \(M \) that \(A \) sends; an attacker cannot cause \(B \) to apply \(F \) to some other message.
- Secrecy: The message \(M \) cannot be read in transit from \(A \) to \(B \): if \(F \) does not reveal \(M \), then the whole protocol does not reveal \(M \).

The secrecy property can be stated in terms of equivalences: if \(F(M) \simeq F(M') \), for any \(M, M' \), then \(\text{Inst}(M) \simeq \text{Inst}(M') \). This means that if \(F(M) \) is indistinguishable from \(F(M') \), then the protocol with message \(M \) is indistinguishable from the protocol with message \(M' \).

There are many sensible ways of formalising the authenticity property. In particular, it may be possible to use notions of refinement or a suitable program logic. However, we choose to write authenticity as an equivalence, for economy. This equivalence compares the protocol with another protocol. Our intent is that the latter protocol serves as a specification. In this case, the specification is:

\[
\begin{align*}
A(M) & \triangleq \overline{c_{AB}}(M) \\
B_{\text{spec}}(M) & \triangleq c_{AB}(x).F(M) \\
\text{Inst}_{\text{spec}}(M) & \triangleq (\nu c_{AB})(A(M) \mid B_{\text{spec}}(M))
\end{align*}
\]

The principal \(A \) is as usual, but the principal \(B \) is replaced with a variant \(B_{\text{spec}}(M) \); this variant receives an input from \(A \) and then acts like \(B \) when \(B \) receives \(M \). We may say that \(B_{\text{spec}}(M) \) is a “magical” version of \(B \) that knows the message \(M \) sent by \(A \), and similarly \(\text{Inst}_{\text{spec}} \) is a “magical” version of \(\text{Inst} \).

Although the specification and the protocol are similar in structure, the specification is more evidently “correct” than the protocol. Therefore, we take the following equivalence as our authenticity property: \(\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M) \), for any \(M \).

In summary, we have:

Authenticity: \(\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M) \), for any \(M \).

Secrecy: \(\text{Inst}(M) \simeq \text{Inst}(M') \) if \(F(M) \simeq F(M') \), for any \(M, M' \).

Each of these equivalences means that two processes being equated are indistinguishable, even when an active attacker is their environment. Neither of these equivalences would hold without the restriction of channel \(c_{AB} \). We prove these equivalences in Section 6, which contains proofs for all our examples.
2.3.2 An example with channel establishment

A more interesting variant of our first example is obtained by adding a channel establishment phase. In this phase, before communication of data, the principals A and B obtain a new channel with the help of a server S.

There are many different ways of establishing a channel, even at the abstract level at which we work here. The one we describe is inspired by the Wide Mouthed Frog protocol [BAN89], which has the basic structure shown in Figure 1.

We consider an abstract and simplified version of the Wide Mouthed Frog protocol. Our version is abstract in that we deal with channels instead of keys; it is simplified in that channel establishment and data communication happen only once (so there is no need for timestamps). In the next section we show how to treat keys and how to allow many instances of the protocol, with an arbitrary number of messages.

Informally, our version is:

Message 1 $A \to S$: c_{AB} on c_{AS}
Message 2 $S \to B$: c_{AB} on c_{SB}
Message 3 $A \to B$: M on c_{AB}

Here c_{AS} is a channel that A and S share initially, c_{SB} is a channel that S and B share initially, and c_{AB} is a channel that A creates for communication with B. After passing the channel c_{AB} to B through S, A sends a message M on c_{AB}. Note that S does not use the channel, but only transmits it.
In the pi calculus, we formulate this protocol as follows:

\[
A(M) \triangleq (\nu c_{AB})\overline{c_{AS}}(c_{AB}).\overline{c_{AB}}(M)
\]

\[
S \triangleq c_{AS}(x).\overline{c_{SB}}(x)
\]

\[
B \triangleq c_{SB}(x).x(y).F(y)
\]

\[
Inst(M) \triangleq (\nu c_{AS})(\nu c_{SB})(A(M) \mid S \mid B)
\]

Here we write \(F(y)\) to represent what \(B\) does with the message \(y\) that it receives, as in the previous example. The restrictions on the channels \(c_{AS}\), \(c_{SB}\), and \(c_{AB}\) reflect the expected privacy guarantees for these channels. The most salient new feature of this specification is the use of scope extrusion: \(A\) generates a fresh channel \(c_{AB}\), and then sends it out of scope to \(B\) via \(S\). We could not have written this description in formalisms such as CCS or CSP; the use of the pi calculus is important.

For discussing authenticity, we introduce the following specification:

\[
A(M) \triangleq (\nu c_{AB})\overline{c_{AS}}(c_{AB}).\overline{c_{AB}}(M)
\]

\[
S \triangleq c_{AS}(x).\overline{c_{SB}}(x)
\]

\[
B_{\text{spec}}(M) \triangleq c_{SB}(x).x(y).F(M)
\]

\[
Inst_{\text{spec}}(M) \triangleq (\nu c_{AS})(\nu c_{SB})(A(M) \mid S \mid B_{\text{spec}}(M))
\]

According to this specification, the message \(M\) is communicated "magically": the process \(F\) is applied to the message \(M\) that \(A\) sends independently of whatever happens during the rest of the protocol run.

We obtain the following authenticity and secrecy properties:

Authenticity: \(Inst(M) \simeq Inst_{\text{spec}}(M), \text{ for any } M.\)

Secrecy: \(Inst(M) \simeq Inst(M') \text{ if } F(M) \simeq F(M'), \text{ for any } M, M'.\)

Again, these properties hold because of the scoping rules of the pi calculus.

2.3.3 Discussion

We believe that the two examples just given are rather encouraging. They indicate that the pi calculus is a natural language for describing some security protocols. In particular, the restriction operator and scope extrusion allow convenient representations for the possession and communication of channels.

We do not wish to suggest that the pi calculus enables us to describe all security protocols, even at an abstract level. For example, some protocols
rely on asymmetric channels (channels of the kind implemented with public-key cryptography [DH76, RSA78]). It may be possible to represent such asymmetric channels in the pi calculus but extending the pi calculus may be simpler and more effective. In all cases, however, the pi calculus notion of scoping should be useful.

3 Protocols using Cryptography

Just as there are several versions of the pi calculus, there are several versions of the spi calculus. These differ in particular in what cryptographic constructs they include.

In this section we introduce a relatively simple spi calculus, namely the pi calculus extended with primitives for shared-key cryptography. We then write several protocols that use shared-key cryptography in this calculus.

As in Section 2, the presentation is rather informal. Later sections contain further formal definitions. Throughout the paper, we often refer to the calculus presented in this section as “the” spi calculus; but we define other versions of the spi calculus in Section 7.

3.1 The Spi Calculus with Shared-Key Cryptography

The syntax of the spi calculus is an extension of that of the pi calculus. In order to represent encrypted messages, we add a clause to the syntax of terms:

\[
L, M, N ::= \ldots \quad \text{terms} \\
\{M\}_N \quad \text{as in Section 2.2} \quad \text{shared-key encryption}
\]

In order to represent decryption, we add a clause to the syntax of processes:

\[
P, Q ::= \ldots \quad \text{processes} \\
\text{case } L \text{ of } \{x\}_N \text{ in } P \quad \text{as in Section 2.2} \quad \text{shared-key decryption}
\]

The variable \(x\) is bound in \(P\).

Intuitively, the meaning of the new constructs is as follows:
• The term \(\{M\}_N \) represents the ciphertext obtained by encrypting the term \(M \) under the key \(N \) using a shared-key cryptosystem such as DES [DES77].

• The process case \(L \) of \(\{x\}_N \) in \(P \) attempts to decrypt the term \(L \) with the key \(N \). If \(L \) is a ciphertext of the form \(\{M\}_N \), then the process behaves as \(P[M/x] \). Otherwise the process is stuck.

Implicit in this definition are some standard but significant assumptions about cryptography:

• The only way to decrypt an encrypted packet is to know the corresponding key.

• An encrypted packet does not reveal the key that was used to encrypt it.

• There is sufficient redundancy in messages so that the decryption algorithm can detect whether a ciphertext was encrypted with the expected key.

It is not assumed that all messages contain information that allows each principal to recognise its own messages (cf. [BAN89]).

The semantics of the spi calculus can be formalised in much the same way as the semantics of the pi calculus. We carry out this formalisation in Section 4. The most interesting issues in this formalisation concern the notion of equivalence. Again, we write \(P \approx Q \) to mean that the behaviours of the processes \(P \) and \(Q \) are indistinguishable. The notion of indistinguishability is complicated by the presence of cryptography.

As an example of these complications, consider the following process:

\[
P(M) \triangleq (\nu K)\pi(\{M\}_K)
\]

This process simply sends \(M \) under a new key \(K \) on a public channel \(c \); the key \(K \) is not transmitted. Intuitively, we would like to be able to say that \(P(M) \) and \(P(M') \) are indistinguishable, for any \(M \) and \(M' \), because an observer cannot discover \(K \) and hence cannot tell whether \(M \) or \(M' \) is sent under \(K \). On the other hand, \(P(M) \) and \(P(M') \) are clearly different, since they transmit different messages on \(c \). A fine-grained equivalence—such as the standard strong bisimilarity—would distinguish \(P(M) \) and \(P(M') \). Our equivalence is coarse-grained enough not to make this unwanted distinction.
3.2 Examples using Shared-Key Cryptography

The spi calculus enables more detailed descriptions of security protocols than the pi calculus. While the pi calculus enables the representation of channels, the spi calculus also enables the representation of the channel implementations in terms of cryptography. In this section we show a few example cryptographic protocols.

As in the pi calculus, scoping is the basis of security in the spi calculus. In particular, restriction can be used to model the creation of fresh, unguessable cryptographic keys. Restriction can also be used to model the creation of fresh nonces of the sort used in challenge-response exchanges.

Security properties can still be expressed as equivalences, although the notion of equivalence is more delicate, as we have discussed.

3.2.1 A first cryptographic example

Our first example is a cryptographic version of the example of Section 2.3.1. We consider two principals A and B that share a key K_{AB}; in addition, we assume there is a public channel c_{AB} that A and B can use for communication, but which is in no way secure. The protocol is simply that A sends a message M under K_{AB} to B, on c_{AB}.

Informally, we write this protocol as follows:

$$\text{Message 1} \quad A \to B: \quad \{M\}_{K_{AB}} \text{ on } c_{AB}$$

In the spi calculus, we write:

$$A(M) \triangleq c_{AB}(\{M\}_{K_{AB}})$$

$$B \triangleq c_{AB}(x). \text{case } x \text{ of } \{y\}_{K_{AB}} \text{ in } F(y)$$

$$\text{Inst}(M) \triangleq (\nu K_{AB})(A(M) \mid B)$$

According to this definition, A sends $\{M\}_{K_{AB}}$ on c_{AB} while B listens for a message on c_{AB}. Given such a message, B attempts to decrypt it using K_{AB}; if this decryption succeeds, B applies F to the result. The assumption that A and B share K_{AB} gives rise to the restriction on K_{AB}, which is syntactically legal and meaningful although K_{AB} is not used as a channel. On the other hand, c_{AB} is not restricted, since it is a public channel. Other principals may send messages on c_{AB}, so B may attempt to decrypt a message not encrypted under K_{AB}; in that case, the protocol will get stuck. We are not concerned
about this possibility, but it would be easy enough to avoid it by writing a slightly more elaborate program for B.

We use the following specification:

$$A(M) \triangleq \overline{c_{AB}\langle \{M\}_{K_{AB}} \rangle}$$
$$B_{\text{spec}}(M) \triangleq c_{AB}(x), \text{case } x \text{ of } \{y\}_{K_{AB}} \text{ in } F(M)$$
$$\text{Inst}_{\text{spec}}(M) \triangleq (\nu K_{AB})(A(M) \mid B_{\text{spec}}(M))$$

and we obtain the properties:

Authenticity: $\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M)$, for any M.

Secrecy: $\text{Inst}(M) \simeq \text{Inst}(M')$ if $F(M) \simeq F(M')$, for any M, M'.

Intuitively, authenticity holds even if the key K_{AB} is somehow compromised after its use. Many factors can contribute to key compromise, for example incompetence on the part of protocol participants, and malice and brute force on the part of attackers. We cannot model all these factors, but we can model deliberate key publication, which is in a sense the most extreme of them. It suffices to make a small change in the definitions of B and B_{spec}, so that they send K_{AB} on a public channel after receiving $\{M\}_{K_{AB}}$. This change preserves the authenticity equation, but clearly not the secrecy equation.

There is an apparent correspondence between the protocol of this section and that of Section 2.3.1, which does not use cryptography. Informally, we may say that this is a cryptographic implementation of the protocol of Section 2.3.1. More precisely, we conjecture that this protocol is an implementation of the parallel composition of the protocol of Section 2.3.1 with $(\nu n)(\overline{c_{AB}(n)})$. (Our notion of implementation is a testing preorder; see Section 4.) The role of $(\nu n)(\overline{c_{AB}(n)})$ is to send a “decoy message” on c_{AB}. This decoy is needed because an environment can detect whether c_{AB} is used or not, and hence (in absence of the decoy) can distinguish the protocol of this section from that of Section 2.3.1.

We do not study implementation relations in this paper. However, we do believe that such relations are important and that they deserve more attention in the field of security. We view this example of an implementation relation as an intriguing novelty; it suggests the possibility of hierarchical development of cryptographic protocols from non-cryptographic specifications.
1. new key K_{AB} under K_{AS}
2. new key K_{AB} under K_{SB}
3. data under new key K_{AB}

Figure 2: Sketch of the Wide Moutched Frog

3.2.2 An example with key establishment

In cryptographic protocols, the establishment of new channels often means the exchange of new keys. There are many methods (most of them flawed) for key exchange. The following example is the cryptographic version of that of Section 2.3.2, and uses a simplified form of the Wide Moutched Frog key exchange. The example is represented in Figure 2.

In the Wide Moutched Frog protocol, the principals A and B share keys K_{AS} and K_{SB} respectively with a server S. When A and B want to communicate securely, A creates a new key K_{AB}, sends it to the server under K_{AS}, and the server forwards it to B under K_{SB}. All communication being protected by encryption, it can happen through public channels, which we write c_{AS}, c_{SB}, and c_{AB}. Informally, a simplified version of this protocol is:

- **Message 1** $A \rightarrow S$: $\{K_{AB}\}_{K_{AS}}$ on c_{AS}
- **Message 2** $S \rightarrow B$: $\{K_{AB}\}_{K_{SB}}$ on c_{SB}
- **Message 3** $A \rightarrow B$: $\{M\}_{K_{AB}}$ on c_{AB}

In the spi calculus, we can express this message sequence as follows:

\[
A(M) \triangleq (\nu K_{AB})(\nu K_{AS})(\{K_{AB}\}_{K_{AS}}\cdot c_{AB}(\{M\}_{K_{AB}}))
\]

\[
S \triangleq c_{AS}(x), \text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } c_{SB}(\{y\}_{K_{SB}})
\]

\[
B \triangleq c_{SB}(x), \text{case } x \text{ of } \{y\}_{K_{SB}} \text{ in } c_{AB}(z), \text{case } z \text{ of } \{w\}_{y} \text{ in } F(w)
\]

\[
\text{Inst}(M) \triangleq (\nu K_{AS})(\nu K_{SB})(A(M) \mid S \mid B)
\]
where \(F(w) \) is a process representing the rest of the behaviour of \(B \) upon receiving a message \(w \). Notice the essential use of scope extrusion: \(A \) generates the key \(K_{AB} \) and sends it out of scope to \(B \) via \(S \).

In the usual pattern, we introduce a specification for discussing authenticity:

\[
A(M) \triangleq (\nu K_{AB}) (\overline{c_{AS}}(\{K_{AB}\} K_{AS}) \cdot \overline{c_{AB}}(\{M\} K_{AB}))
\]

\[
S \triangleq c_{AS}(x) . \text{case } x \text{ of } \{y\} K_{AS} \text{ in } \overline{c_{SB}}(\{y\} K_{SB})
\]

\[
B_{spec}(M) \triangleq c_{SB}(x) . \text{case } x \text{ of } \{y\} K_{SB} \text{ in } c_{AB}(z) . \text{case } z \text{ of } \{w\} y \text{ in } F(M)
\]

\[
\text{Inst}_{spec}(M) \triangleq (\nu K_{AS})(\nu K_{SB})(A(M) \mid S \mid B_{spec}(M))
\]

One may be concerned about the apparent complexity of this specification. On the other hand, despite its complexity, the specification is still more evidently “correct” than the protocol. In particular, it is still evident that \(B_{spec}(M) \) applies \(F \) to the data \(M \) from \(A \), rather than to some other message chosen as the result of error or attack.

We obtain the usual properties of authenticity and secrecy:

Authenticity: \(\text{Inst}(M) \simeq \text{Inst}_{spec}(M) \), for any \(M \).

Secrecy: \(\text{Inst}(M) \simeq \text{Inst}(M') \) if \(F(M) \simeq F(M') \), for any \(M, M' \).

3.2.3 A complete authentication example (with a flaw)

In the examples discussed so far, channel establishment and data communication happen only once. As we demonstrate now, it is a simple matter of programming to remove this restriction and to represent more sophisticated examples with many sessions between many principals. However, as the intricacy of our examples increases, so does the opportunity for error. This should not be construed as a limitation of our approach, but rather as the sign of an intrinsic difficulty: many of the mistakes in authentication protocols arise from confusion between sessions.

We consider a system with a server \(S \) and \(n \) other principals. We use the terms \(\text{suc}(0) \), \(\text{suc}(\text{suc}(0)) \), \(\ldots \), which we abbreviate to \(1, 2, \ldots \), as the names of these other principals. We assume that each principal has an input channel; these input channels are public and have the names \(c_1, c_2, \ldots, c_n \) and \(c_S \). We also assume that the server shares a pair of keys with each other
principal, one key for each direction: principal i uses key K_iS to send to S and key K_{Si} to receive from S, for $1 \leq i \leq n$.

We extend our standard example to this system of $n+1$ principals, with the following message sequence:

Message 1 $A \rightarrow S$: $A, \{B, K_{AB}\}_{K_{AS}}$ on c_S
Message 2 $S \rightarrow B$: $\{A, K_{AB}\}_{K_{SB}}$ on c_B
Message 3 $A \rightarrow B$: $A, \{M\}_{K_{AB}}$ on c_B

Here A and B range over the n principals. The names A and B appear in messages in order to avoid ambiguity; when these names appear in clear, they function as hints that help the recipient choose the appropriate key for decryption of the rest of the message. The intent is that the protocol can be used by any pair of principals, arbitrarily often; concurrent runs are allowed.

As it stands, the protocol is seriously flawed; a correct protocol appears below, in Section 3.2.4. (The flaws and their fixes should be clear to readers knowledgeable in security.) We continue to discuss the protocol in order to explain our method for representing it in the spi calculus.

In our spi calculus representation, we use several convenient abbreviations. Firstly, we rely on pair splitting on input and on decryption:

\[
c(x_1, x_2).P \triangleq c(y).\text{let } (x_1, x_2) = y \text{ in } P
\]

\[
\text{case } L \text{ of } \{x_1, x_2\}_N \text{ in } P \triangleq \text{case } L \text{ of } \{y\}_N \text{ in let } (x_1, x_2) = y \text{ in } P
\]

where variable y is fresh. Secondly, we need the standard notation for the composition of a finite set of processes. Given a finite family of processes P_1, \ldots, P_k, we let $\prod_{i \in 1..k} P_i$ be their k-way composition $P_1 | \cdots | P_k$. Finally, we omit the inner brackets from an encrypted pair of the form $\{(N, N')\}_{N''}$, and simply write $\{N, N'\}_{N''}$, as is common in informal descriptions.

Informally, an instance of the protocol is determined by a choice of parties (who is A and who is B) and by the message sent after key establishment. More formally, an instance I is a triple (i, j, M) such that i and j are principals and M is a message. We say that i is the source address and j the destination address of the instance. Moreover, we assume that there is an abstraction F representing the behaviour of any principal after receipt of Message 3 of the protocol. For an instance (i, j, M) that runs as intended, the argument to F is the triple (i, j, M).

Given an instance (i, j, M), the following process corresponds to the role of A:

\[
\text{Send}(i, j, M) \triangleq (\nu K)((\overline{\text{c}}S((\overline{\text{i}}, \{j, K\}_{K_{is}}))) | \overline{\text{c}}A((\overline{\text{i}}, \{M\}_{K})))
\]
The sending process creates a key K and sends it to the server, along with the names i and j of the principals of the instance. The sending process also sends M under K, along with its name i. We have put the two messages in parallel, somewhat arbitrarily; but putting them in sequence would have much the same effect.

The following process corresponds to the role of B for principal j:

$$
\text{Recv}(j) \triangleq c_j(y_{\text{cipher}}, \text{case } y_{\text{cipher}} \text{ of } \{x_A, x_{\text{key}}\}K_{sj} \text{ in }
\begin{align*}
&c_j(z_A, z_{\text{cipher}})\{x_A \text{ is } z_A\} \\
&\text{case } z_{\text{cipher}} \text{ of } \{z_{\text{plain}}\}x_{\text{key}} \text{ in } F(x_A, j, z_{\text{plain}})
\end{align*}
$$

The receiving process waits for a message y_{cipher} from the server, extracts a key x_{key} from this message, then waits for a message z_{cipher} under this key, and finally applies F to the name x_A of the presumed sender, to its own name j, and to the contents z_{plain} of the message. The variables x_A and z_A are both intended as the name of the sending process, so they are expected to match.

The server S is the same for all instances:

$$
S \triangleq c_S(x_A, x_{\text{cipher}}).
\Pi_{i \in 1..n} [x_A \text{ is } i] \text{ case } x_{\text{cipher}} \text{ of } \{x_B, x_{\text{key}}\}K_{is} \text{ in }
\Pi_{j \in 1..n} [x_B \text{ is } j] \tau^j(\{x_A, x_{\text{key}}\}K_{sj})
$$

The variable x_A is intended as the name of the sending process, x_B as the name of the receiving process, x_{key} as the new key, and x_{cipher} as the encrypted part of the first message of the protocol. In the code for the server, we program an n-way branch on the name x_A by using a parallel composition of processes indexed by $i \in 1..n$. We also program an n-way branch on the name x_B, similarly. (This casual use of multiple threads is characteristic of the pi calculus; in practice the branch could be implemented more efficiently, but here we are interested only in the behaviour of the server, not in its efficient implementation.)

Finally we define a whole system, parameterised on a list of instances of the protocol:

$$
\text{Sys}(I_1, \ldots, I_m) \triangleq (\nu K_{iS})(\nu K_{sj}^t)
\begin{align*}
&\text{Send}(I_1) | \cdots | \text{Send}(I_m) | \\
&!S | \\
&!\text{Recv}(1) | \cdots | !\text{Recv}(n))
\end{align*}
$$
where \((\nu K_i S)(\nu K_S j)\) stands for \((\nu K_1 S)(\nu K_S 1)\ldots(\nu K_n S)(\nu K_S n)\). The expression \(Sys(I_1, \ldots, I_m)\) represents a system with \(m\) instances of the protocol. The server is replicated; in addition, the replication of the receiving processes means that each principal is willing to play the role of receiver in any number of runs of the protocol in parallel. Thus, any two runs of the protocol can be simultaneous, even if they involve the same principals.

As before, we write a specification by modifying the protocol. For this specification, we revise both the sending process and the receiving process, but not the server:

\[
\begin{align*}
Send_{\text{spec}}(i, j, M) & \triangleq (\nu p)(Send(i, j, p) \mid p(x), F(l_j, M)) \\
Recv_{\text{spec}}(j) & \triangleq c_j(\gamma_{\text{cipher}}), \text{case} \gamma_{\text{cipher}} \text{ of} \{ z_A, z_{\text{key}} \} K_S j \text{ in} \\
& \quad \qquad \quad c_j(z_A, z_{\text{cipher}}), [x_A \text{ is } z_A] \\
& \quad \qquad \quad \text{case} z_{\text{cipher}} \text{ of} \{ z_{\text{plain}} \} z_{\text{key}} \text{ in } z_{\text{plain}}(*) \\
Sys_{\text{spec}}(I_1, \ldots, I_m) & \triangleq (\nu K_i S)(\nu K_S j) \\
& \quad \quad \quad (Send_{\text{spec}}(I_1) \mid \cdots \mid Send_{\text{spec}}(I_m) \mid \\
& \quad \quad \quad !S \mid \\
& \quad \quad \quad !Recv_{\text{spec}}(1) \mid \cdots \mid !Recv_{\text{spec}}(n))
\end{align*}
\]

In this specification, the sending process for instance \((i, j, M)\) is as in the implementation, except that it sends a fresh channel name \(p\) instead of \(M\), and runs \(F(l_j, M)\) when it receives any message on \(p\). The receiving process in the specification is identical to that in the implementation, except that \(F(y_A, j, z_{\text{plain}})\) is replaced with \(z_{\text{plain}}(*)\), where the symbol \(*\) represents a fixed but arbitrary message. The variable \(z_{\text{plain}}\) will be bound to the fresh name \(p\) for the corresponding instance of the protocol. Thus, the receiving process will signal on \(p\), triggering the execution of the appropriate process \(F(l_j, M)\).

A crucial property of this specification is that the only occurrences of \(F\) are bundled into the description of the sending process. There, \(F\) is applied to the desired parameters, \((l_j, M)\). Hence it is obvious that an instance \((i, j, M)\) will cause the execution of \(F(l'_j, M')\) only if \(i'\) is \(i\), \(j'\) is \(j\), and \(M'\) is \(M\). Therefore, despite its complexity, the specification is more obviously "correct" than the implementation.

Much as in previous examples, we would like the protocol to have the following authenticity property:

\[Sys(I_1, \ldots, I_m) \simeq Sys_{\text{spec}}(I_1, \ldots, I_m), \text{ for any instances } I_1, \ldots, I_m.\]
Unfortunately, the protocol is vulnerable to a replay attack that invalidates the authenticity equation. Consider the system $Sys(I, I')$ where $I = (i, j, M)$ and $I' = (i, j, M')$. An attacker can replay messages of one instance and get them mistaken for messages of the other instance, causing M to be passed twice to F. Thus, $Sys(I, I')$ can be made to execute two copies of $F(i, j, M)$. In contrast, no matter what an attacker does, $Sys_{spec}(I, I')$ will run each of $F(i, j, M)$ and $F(i, j, M')$ at most once. The authenticity equation therefore does not hold. We disprove it more formally in Section 6.4.

We leave the discussion of secrecy for the next example.

3.2.4 A complete authentication example (repaired)

Now we improve the protocol of the previous section by adding nonce handshakes as protection against replay attacks. The Wide Mouthed Frog protocol uses timestamps instead of handshakes. The treatment of timestamps in the spi calculus is possible, but it requires additional elements, including at least a rudimentary account of clock synchronisation. Protocols that use handshakes are fundamentally more self-contained than protocols that use timestamps; therefore, handshakes make for clearer examples.

Informally, our new protocol is:

```
Message 1  A → S:  A on c_S
Message 2  S → A:  N_S on c_A
Message 3  A → S:  A, \{A, A, B, K_{AB}, N_S\}_{K_{AS}} on c_S
Message 4  S → B:  * on c_B
Message 5  B → S:  N_B on c_S
Message 6  S → B:  \{S, A, B, K_{AB}, N_B\}_{K_{SB}} on c_B
Message 7  A → B:  A, \{M\}_{K_{AB}} on c_B
```

Messages 1 and 2 are the request for a challenge and the challenge, respectively. The challenge is N_S, a nonce created by S; the nonce must not have been used before for this purpose. Obviously the nonce is not secret, but it must be unpredictable (for otherwise an attacker could simulate a challenge and later replay the response [AN96]). In Message 3, A says that A and B can communicate under K_{AB}, sometime after receipt of N_S. All the components A, B, K_{AB}, N_S appear explicitly in the message, for safety [AN96], but A could perhaps be elided. The presence of N_S in Message 3 proves the freshness of the message. In Message 4, * represents a fixed but arbitrary message; S uses * to signal that it is ready for a nonce challenge N_B from
where variables, given inductively for any created names. We obtain the following spi calculus expressions:

\[
(N_1, \ldots, N_k, N_{k+1}) \triangleq ((N_1, \ldots, N_k), N_{k+1})
\]

let \((x_1, \ldots, x_k, x_{k+1}) = N\) in \(P\) \(\triangleq\) let \((y, x_{k+1}) = N\) in

\[
\text{let } (x_1, \ldots, x_k) = y \text{ in } P
\]

where variable \(y\) is fresh.

In the spi calculus, we represent the nonces of this protocol as newly created names. We obtain the following spi calculus expressions:

\[
\text{Send}(i, j, M) \triangleq c_S(\langle i \rangle) | \\
\quad \quad c_i(x_{nonce}). \\
\quad \quad (\nu K)(c_S(\langle i \rangle \{ S, I_j, i, j, K, x_{nonce} \} K_{ij})) | c_S(\langle i \rangle \{ M \} K)) \\
\]

\[
S \triangleq c_S(x_A). \Pi_{i \in 1..n} [x_A \text{ is } i] (\nu N_S)(c_S(\langle N_S \rangle)) | \\
\quad \quad c_S(x'_A, x_{cipher}).[x'_A \text{ is } i] \\
\quad \quad \text{case } x_{cipher} \text{ of } \{ y_A, z_A, x_B, x_{key}, x_{nonce} \} K_{ij} \text{ in} \\
\quad \quad \Pi_{i \in 1..n} [y_A \text{ is } i] [z_A \text{ is } i] [x_B \text{ is } j] [x_{nonce} \text{ is } N_S] \\
\quad \quad \quad (c_{S}(y_{nonce}), c_S(\langle S, I_j, i, x_{key}, y_{nonce} \rangle K_{ij}))) \\
\]

\[
\text{Recv}(j) \triangleq c_j(w). (\nu N_B)(c_S(\langle N_B \rangle)) | \\
\quad \quad c_j(y_{cipher}). \\
\quad \quad \text{case } y_{cipher} \text{ of } \{ x_S, x_A, x_B, x_{key}, y_{nonce} \} K_{ij} \text{ in} \\
\quad \quad \Pi_{i \in 1..n} [x_S \text{ is } S] [x_A \text{ is } i] [x_B \text{ is } j] [y_{nonce} \text{ is } N_B] \\
\quad \quad \quad c_j(z_A, z_{cipher}).[z_A \text{ is } x_A] \\
\quad \quad \text{case } z_{cipher} \text{ of } \{ z_{plain} \} x_{key} \text{ in } F(\langle I_j, z_{plain} \rangle) \\
\]

\[
\text{Sys}(I_1, \ldots, I_m) \triangleq (\nu K^S)(\nu K^S) \\
\quad \quad (\text{Send}(I_1) | \cdots | \text{Send}(I_m) | \\
\quad \quad \quad !S | \\
\quad \quad \quad !\text{Recv}(1) | \cdots | !\text{Recv}(n))
\]

The names \(N_S\) and \(N_B\) represent the nonces. The variable subscripts are hints that indicate what the corresponding variables should represent; for
example, x_A, x'_A, y_A, and z_A are all expected to be the name of the sending process, and x_{nonce} and y_{nonce} are expected to be the nonces generated by S and B, respectively.

The definition of Sys_{spec} is exactly analogous to that of the previous section, so we omit it.

We now obtain the authenticity property:

$$Sys(I_1, \ldots, I_m) \simeq Sys_{spec}(I_1, \ldots, I_m), \text{ for any instances } I_1, \ldots, I_m.$$

This property holds because of the use of nonces. In particular, the attack described in Section 3.2.3 can no longer distinguish $Sys(I_1, \ldots, I_m)$ from $Sys_{spec}(I_1, \ldots, I_m)$.

As a secrecy property, we would like to express that there is no way for an external observer to tell apart two executions of the system with identical participants but different messages. The secrecy property should therefore assert that the protocol does not reveal any information about the contents of exchanged messages if none is revealed after the key exchange.

In order to express that no information is revealed after the key exchange, we introduce the following definition. We say that a pair of instances (i, j, M) and (i', j', M') is indistinguishable if the two instances have the same source and destination addresses $(i = i'$ and $j = j')$ and if $F(i, j, M) \simeq F(i', j', M')$.

Our definition of secrecy is that, if each pair $(I_1, J_1), \ldots, (I_m, J_m)$ is indistinguishable, then $Sys(I_1, \ldots, I_m) \simeq Sys(J_1, \ldots, J_m)$. This means that an observer cannot distinguish two systems parameterised by two sets of indistinguishable instances. This property holds for our protocol.

In summary, we have:

Authenticity: $Sys(I_1, \ldots, I_m) \simeq Sys_{spec}(I_1, \ldots, I_m)$,

for any instances I_1, \ldots, I_m.

Secrecy: $Sys(I_1, \ldots, I_m) \simeq Sys(J_1, \ldots, J_m)$,

if each pair $(I_1, J_1), \ldots, (I_m, J_m)$ is indistinguishable.

We could ask for a further property of anonymity, namely that the source and the destination addresses of instances be protected from eavesdroppers. However, anonymity holds neither for our protocol nor for most current, practical protocols. It would be easy enough to specify anonymity, should it be relevant.
3.2.5 Discussion

After these examples, it should be obvious that writing a protocol in the spi calculus is a little harder than writing it in the informal notations common in the literature. On the other hand, the spi calculus versions are more detailed. They make clear not only what messages are sent but how the messages are generated and how they are checked. These aspects of the spi calculus descriptions add complexity, but they enable finer analysis. (Recall, for example, that one of the mistakes in the CCITT X.509 protocol was to omit a timestamp check [BAN89].)

It should also be obvious that writing a protocol in the spi calculus is essentially analogous to writing it in any programming language with suitable communication and encryption libraries. The main advantage of the spi calculus is its formal precision.

Finally, as noted in the introduction, the spi calculus has both similarities and differences with other formalisms for the analysis of security protocols. The examples given in this section exhibit some of those similarities and differences. We cannot say that the spi calculus will be as good a tool for finding flaws as some of the logics of authentication. On the other hand, the spi calculus seems to rest on firmer ground, so it yields more convincing proofs of correctness.

4 Formal Semantics of the Spi Calculus

In this section we start the formal treatment of the spi calculus. In Section 4.1 we introduce the reaction relation; \(P \rightarrow Q \) means there is a reaction amongst the subprocesses of \(P \) such that the whole can take a step to process \(Q \). Reaction is the basic notion of computation in both the pi calculus and the spi calculus. In Section 4.2 we give a precise definition of the equivalence relation \(\simeq \), which we have used for expressing security properties.

Syntactic Conventions

The grammar of the spi calculus is as given in Sections 2.2 and 3.1. It has two syntactic categories, of \textit{terms}, ranged over by \(L, M, N \), and \textit{processes}, ranged over by \(P, Q, R \). The metavariables \(m, n, p, q, r \) range over an infinite set of \textit{names}. The metavariables \(x, y, z \) range over a disjoint, infinite set of \textit{variables}.
We write $fn(M)$ and $fn(P)$ for the sets of names free in term M and process P respectively. Similarly, we write $fv(M)$ and $fv(P)$ for the sets of variables free in M and P respectively. We say that a term or process is closed to mean that it has no free variables. (To be able to communicate externally, a process must have free names.) The set $Proc = \{ P \mid fv(P) = \emptyset \}$ is the set of closed processes.

4.1 The Reaction Relation

The reaction relation is a concise account of computation in the pi calculus introduced by Milner [Mil92], inspired by the Chemical Abstract Machine of Berry and Boudol [BB90]. One thinks of a process as consisting of a chemical solution of molecules waiting to react. A reaction step arises from the interaction of the adjacent molecules $\overline{m}(N).P$ and $m(x).Q$, as follows:

\[
(\text{React Inter}) \quad \overline{m}(N).P \mid m(x).Q \rightarrow P \mid Q[N/x]
\]

Just as one might stir a chemical solution to allow non-adjacent molecules to react, we define a relation, structural equivalence, that allows processes to be rearranged so that (React Inter) is applicable. We first define the reduction relation \triangleright on closed processes:

- **(Red Repl)** $\triangleright \quad !P \triangleright P \mid !P$
- **(Red Match)** $\triangleright \quad [M \text{ is } M] \ P \triangleright P$
- **(Red Let)** $\triangleright \quad \text{let } (x,y) = (M,N) \text{ in } P \triangleright P[M/x][N/y]$
- **(Red Zero)** $\triangleright \quad \text{case } 0 \text{ of } 0 : P \text{ suc}(x) : Q \triangleright P$
- **(Red Suc)** $\triangleright \quad \text{case suc}(M) \text{ of } 0 : P \text{ suc}(x) : Q \triangleright Q[M/x]$
- **(Red Decrypt)** $\triangleright \quad \text{case } \{M\}_N \text{ of } \{x\}_N \text{ in } P \triangleright P[M/x]$

(The reduction relation is not found in previous accounts of the pi calculus; we introduce it here because it is useful also in the definition of commitment, given in Section 5.1.) We let structural equivalence, \equiv, be the least relation on closed processes that satisfies the following equations and rules:

- **(Struct Nil)** $\quad P \mid 0 \equiv P$
- **(Struct Comm)** $\quad P \mid Q \equiv Q \mid P$
- **(Struct Assoc)** $\quad P \mid (Q \mid R) \equiv (P \mid Q) \mid R$
- **(Struct Switch)** $\quad (\nu m)(\nu n)P \equiv (\nu n)(\nu m)P$
- **(Struct Drop)** $\quad (\nu n)0 \equiv 0$
- **(Struct Extrusion)** $\quad (\nu n)(P \mid Q) \equiv P \mid (\nu n)Q$ if $n \notin fn(P)$
No we can complete the formal description of the reaction relation. We let the reaction relation, \rightarrow, be the least relation on closed processes that satisfies (React Inter) and the following rules:

\[
\begin{align*}
\text{(React Struct)} & \quad P \equiv P' \quad P' \rightarrow Q' \quad Q' \equiv Q \\
\text{(React Par)} & \quad P \rightarrow P' \\
\text{(React Res)} & \quad (\nu m) P \rightarrow (\nu m) P'
\end{align*}
\]

This definition of the reaction relation corresponds to the informal description of process behaviour given in Sections 2.2 and 3.1.

As an example, we can use the definition of the reaction relation to show the behaviour of the protocol of Section 3.2.2:

\[
\begin{align*}
\text{Inst}(M) & \quad \equiv \quad (\nu K_{AS})(\nu K_{SB})(A(M) \mid S \mid B) \\
& \quad \rightarrow \quad (\nu K_{AS})(\nu K_{SB})(\nu K_{AB}) \\
& \quad \quad \quad (\overline{c_{AB}\{\{M\}_K_{AB}\} | c_{SB}\{\{K_{AB}\}_K_{SB}\} | B}) \\
& \quad \rightarrow \quad (\nu K_{AS})(\nu K_{SB})(\nu K_{AB}) \\
& \quad \quad \quad (\overline{c_{AB}\{\{M\}_K_{AB}\} | c_{AB}(z).\text{case } z \text{ of } \{w\}_{K_{AB}} \text{ in } F(w)}) \\
& \quad \rightarrow \quad (\nu K_{AS})(\nu K_{SB})(\nu K_{AB}) F(M) \\
& \quad \equiv \quad F(M)
\end{align*}
\]

The last step in this calculation is justified by our general convention that none of the bound parameters of the protocol (including, in this case, K_{AS}, K_{SB}, and K_{AB}) occurs free in F.

28
4.2 Testing Equivalence

In order to define equivalence, we first define a predicate that describes the channels on which a process can communicate. We let a *barb*, β, be an input or output channel, that is, either a name m (representing input) or a co-name \overline{m} (representing output). For a closed process P, we define the predicate P *exhibits barb* β, written $P \downarrow \beta$, by the two axioms:

(Barb In) $m(x).P \downarrow m$
(Barb Out) $\overline{m}(M).P \downarrow \overline{m}$

and the three rules:

(Barb Par) $P \downarrow \beta$
(Barb Res) $P \downarrow \beta$ $\beta \notin \{m, \overline{m}\}$
(Barb Struct) $P \equiv Q$ $Q \downarrow \beta$

to provide:

$P | Q \downarrow \beta$

Intuitively, $P \downarrow \beta$ holds just if P is a closed process that may input or output immediately on barb β. The *convergence* predicate $P \downarrow \beta$ holds if P is a closed process that exhibits β after some reactions:

(Conv Barb) $P \downarrow \beta$
(Conv React) $P \rightarrow Q$ $Q \downarrow \beta$

We let a *test* consist of any closed process R and any barb β. A closed process P *passes* the test if and only if $(P \mid R) \downarrow \beta$. The notion of testing gives rise to a testing preorder \sqsubseteq and to a testing equivalence \simeq on the set Proc of closed processes:

$P \sqsubseteq Q \triangleq$ for any test (R, β), if $(P \mid R) \downarrow \beta$ then $(Q \mid R) \downarrow \beta$

$P \simeq Q \triangleq P \sqsubseteq Q$ and $Q \sqsubseteq P$

The idea of testing equivalence comes from the work of De Nicola and Hennessy [DH84]. In that work, tests are processes that contain the distinguished name ω (instead of being parameterised by a barb β). This is only a superficial difference, and we can show that our relation \simeq is a version of De Nicola and Hennessy’s may-testing equivalence. As De Nicola and Hennessy have explained, may-testing corresponds to partial correctness (or safety), while must-testing corresponds to total correctness. Like much
of the security literature, our work focuses on safety properties, hence our definitions.

One of the advantages of testing equivalence as the basis of our specifications of authenticity and secrecy is its simple definition in terms of the convergence predicate. A test neatly formalises the idea of a generic experiment or observation another process (such as an attacker) might perform on a process, so testing equivalence concisely captures the concept of equivalence in an arbitrary environment.

According to our definitions, two closed processes P and Q are testing equivalent if their respective parallel compositions with a third process R “behave similarly”. It follows that P and Q can be used interchangeably in any context (not just in parallel with R). More precisely, testing equivalence is a congruence; that is, \simeq is an equivalence relation with the property that if $P \simeq Q$ then $C[P] \simeq C[Q]$ for any closed context C. (A closed context C is a closed process with a single hole; $C[P]$ and $C[Q]$ are the outcomes of filling the hole with P and Q, respectively.)

Proposition 1

1. *Structural equivalence implies testing equivalence.*

2. *Testing equivalence is reflexive, transitive, and symmetric.*

3. *Testing equivalence is a congruence on closed processes.*

This proposition is essential for equational reasoning with testing equivalence. Its proof is in Appendix D, where we show that testing equivalence remains a congruence when extended to open processes.

Testing equivalence is sensitive to the choice of language. Two processes that are testing equivalent in our calculus may not be testing equivalent after new constructs are added to the calculus. As Boreale and De Nicola have shown [BN95], testing equivalence becomes finer-grained in the presence of a mismatch construct ([M is not N] P). Our calculus does not include a mismatch construct because we have not found a need for it in writing protocols; however, such a construct is sensible and perhaps yields a better definition of testing equivalence. The same is true for other “negative” constructs that check whether a term is not a name, not a number, not a pair, or not encrypted under a given key. We believe that the results of this paper remain valid for a range of reasonable extensions of our calculus, but we leave the study of such extensions for future work.
5 Semantic Notions Useful in Proofs

This section develops proof techniques for the spi calculus, based on earlier work on the pi calculus. Section 5.1 defines the commitment relation, providing in particular a characterisation of the reaction relation. Section 5.2 reviews the notions of strong bisimulation, barbed equivalence, and barbed congruence [MS92]. Finally, Section 5.3 introduces the underpinning relation and shows its use for proofs of secrecy.

In order to prove a testing equivalence directly, we need to consider arbitrary tests and arbitrary sequences of reactions. The use of structural equivalence to define reaction is elegant, but makes proofs a little awkward. One of the purposes of this section is to obtain a direct inductive characterisation of reaction without appeal to structural equivalence, and a co-inductive method for proving testing equivalence.

5.1 The Commitment Relation

The original semantics of the pi calculus (given in [MPW92]) is not based on the notion of reaction, but rather on a labelled transition system. Here we define a labelled-transition semantics for the spi calculus, imitating Milner’s recent lecture notes [Mil95b]. Despite differences in style, this semantics is essentially equivalent to the one of Section 4, so it can be used in proofs about that semantics.

We need some new syntactic forms. An abstraction is an expression of the form $(x)P$, where x is a bound variable and P is a process. A concretion is an expression of the form $(\nu m_1,\ldots,m_k)(M)P$, where M is a term, P is a process, $k \geq 0$, and the names m_1,\ldots,m_k are bound in M and P. We often write concretions as $(\nu m)(M)P$, where $m = m_1,\ldots,m_k$, or simply $(\nu)(M)P$ if $k = 0$. Finally, an agent is an abstraction, a process, or a concretion. We use the metavariables A and B to stand for arbitrary agents.

We extend the restriction and composition operators to arbitrary agents, as follows. For an abstraction, $(x)P$, we set:

$$ (\nu m)(x)P \triangleq (x)(\nu m)P $$

$$ R \mid (x)P \triangleq (x)(R \mid P) $$

assuming that $x \notin \text{fv}(R)$. For a concretion, $(\nu m)(M)Q$, we set:

$$ (\nu m)(\nu m)(M)Q \triangleq \begin{cases} (\nu m,m)(M)Q & \text{if } m \in \text{fn}(M) \\ (\nu m)(M)(\nu m)Q & \text{otherwise} \end{cases} $$

31
assuming that \(m \notin \{ \bar{n} \} \) and that \(\{ \bar{n} \} \cap f_n(R) = \emptyset \). We define the dual composition \(A \mid R \) symmetrically. If \(F \) is the abstraction \((x)P \) and \(C \) is the concretion \((\nu \bar{n})(M)Q \), and \(\{ \bar{n} \} \cap f_n(P) = \emptyset \), we define the interactions \(F @ C \) and \(C @ F \) to be the closed processes given by:

\[
F @ C \eqdef (\nu \bar{n})(P[M/x] \mid Q) \\
C @ F \eqdef (\nu \bar{n})(Q \mid P[M/x])
\]

When \(F \) is the abstraction \((x)P \), we may write \(F(M) \) for its instantiation to \(M \), that is, for \(P[M/x] \). With this notation, we have \(F @ C = (\nu \bar{n})(F(M) \mid Q) \) and \(C @ F = (\nu \bar{n})(Q \mid F(M)) \).

An action is a name \(m \), a co-name \(\bar{m} \), or the distinguished silent action \(\tau \). That is, an action is either a barb or \(\tau \). The commitment relation is written \(P \xrightarrow{\alpha} A \), where \(P \) is a closed process, \(\alpha \) is an action, and \(A \) is a closed agent. We define this relation inductively, by the following rules:

(Comm In)

\[
m(x).P \xrightarrow{\bar{m}} (x)P \\
\]

(Comm Out)

\[
\bar{m}(M).P \xrightarrow{\nu} (\nu\bar{m})(M)P \\
\]

(Comm Inter 1)

\[
P \xrightarrow{m} F \quad Q \xrightarrow{\bar{m}} C \\
P \mid Q \xrightarrow{\tau} F @ C \\
\]

(Comm Inter 2)

\[
P \xrightarrow{\bar{m}} C \quad Q \xrightarrow{m} F \\
P \mid Q \xrightarrow{\tau} C @ F \\
\]

(Comm Par 1)

\[
P \xrightarrow{\alpha} A \\
P \mid Q \xrightarrow{\alpha} A \mid Q \\
\]

(Comm Par 2)

\[
Q \xrightarrow{\alpha} A \\
Q \xrightarrow{\alpha} P \mid A \\
\]

(Comm Res)

\[
P \xrightarrow{\alpha} A \quad \alpha \notin \{ m, \bar{m} \} \\
(\nu m)P \xrightarrow{\alpha} (\nu m)A \\
\]

(Comm Red)

\[
P > Q \quad Q \xrightarrow{\alpha} A \\
P \xrightarrow{\alpha} A \\
\]

Intuitively, (Comm In) says that an abstraction is the residue of an input commitment; (Comm Out) says that a concretion is the residue of an output commitment; and (Comm Inter 1) and (Comm Inter 2) say that the combination of an abstraction and a concretion gives an interaction. Thus, the
commitment relation has a straightforward structural definition; that is its main appeal.

Whenever $P \xrightarrow{\alpha} A$, the action α is τ, a name, or a co-name just if the agent A is a process, an abstraction, or a concretion, respectively. Therefore, the commitment relation indexed by τ, $\xrightarrow{\tau}$, is a binary relation on closed processes. We write $\xrightarrow{\tau}^*$ for the reflexive and transitive closure of $\xrightarrow{\tau}$. Moreover, we write $P \xrightarrow{\tau} \equiv Q$ when there exists a process R such that $P \xrightarrow{\tau} R$ and $R \equiv Q$.

The following propositions connect the commitment relation with some of the formal notions of Section 4: exhibiting a barb, reaction, and testing.

Proposition 2 $P \downarrow \beta$ if and only if there exists an agent A such that $P \beta A$.

Proposition 3 $P \rightarrow Q$ if and only if $P \xrightarrow{\tau} \equiv Q$.

Proposition 4 P passes a test (R, β) if and only if there exist an agent A and a process Q such that $P | R \xrightarrow{\tau}^* Q$ and $Q \beta A$.

The proofs of these propositions are in Appendix B.

5.2 Some Auxiliary Equivalences

In this section we describe several equivalences on processes that approximate testing equivalence. In particular, in Section 5.2.3, we define barbed congruence, which is a stronger relation than testing equivalence but is sometimes easier to prove directly.

5.2.1 Strong bisimilarity

We first recall the definition of strong bisimulation [Mil95b]. If \mathcal{R} is a relation on closed processes, we define the relation \mathcal{R} on closed agents:

\[
\begin{align*}
P &\mathcal{R} Q \quad \text{iff} \quad P \mathcal{R} Q \\
(x)P &\mathcal{R} (x)Q \quad \text{iff} \quad P[M/x] \mathcal{R} Q[M/y] \text{ for all closed } M \\
(\nu \bar{n})\langle M \rangle P &\mathcal{R} (\nu \bar{m})\langle M \rangle Q \quad \text{iff} \quad \bar{m} \text{ is a permutation of } \bar{n} \text{ and } P \mathcal{R} Q
\end{align*}
\]

A **strong simulation** is a binary relation $\mathcal{S} \subseteq \text{Proc} \times \text{Proc}$ such that if $P \mathcal{S} Q$ and $P \xrightarrow{\alpha} A$ then there exists B with $Q \xrightarrow{\alpha} B$ and $A \mathcal{S} B$. A relation \mathcal{S} is a **strong bisimulation** if and only if both \mathcal{S} and its converse \mathcal{S}^{-1} are strong simulations.
Strong bisimilarity, written \sim_s, is the greatest strong bisimulation, namely the union of all strong bisimulations. Strong bisimilarity is a rather fine-grained equivalence for the spi calculus. For instance, it discriminates between the processes $(\nu K)\pi(M)_{\forall K}$ and $(\nu K)\pi(M')_{\forall K}$, which we would wish to equate as we explained in Section 3.1. Still, strong bisimilarity is often useful in justifying particular steps of our proofs.

5.2.2 Barbed equivalence

Intuitively, one way of weakening strong bisimilarity is to ignore what messages are sent on what channels, and to record only what channels are used. This informal idea leads to the concepts defined here and in Section 5.2.3.

A barbed simulation is a binary relation $S \subseteq \text{Proc} \times \text{Proc}$ such that $P \x S Q$ implies:

1. for each barb β, if $P \downarrow \beta$ then $Q \downarrow \beta$, and

2. if $P \rightarrow P'$ then there exists Q' such that $Q \rightarrow Q'$ and $P' \equiv S \equiv Q'$

where $P' \equiv S \equiv Q'$ means that there exist P'' and Q'' such that $P' \equiv P''$, $P'' \x S Q''$, and $Q'' \equiv Q'$. A barbed bisimulation is a relation S such that both S and S^{-1} are barbed simulations.

Barbed equivalence, written \sim_b, is the greatest barbed bisimulation. We prove the following basic facts about barbed equivalence in Appendix D:

Proposition 5

1. Barbed equivalence is reflexive, transitive, and symmetric.

2. Structural equivalence implies barbed equivalence.

3. Strong bisimilarity implies barbed equivalence.

4. Barbed equivalence is preserved by restriction.

It follows from these facts, in particular, that if $P \sim Q$ and $P \rightarrow P'$ then there exists Q' such that $Q \rightarrow Q'$ and $P' \sim Q'$.

In order to establish a barbed equivalence, it is often convenient to use Milner's standard technique of "bisimulation up to" [Mil89, MPW92]. A barbed simulation up to \sim is a binary relation $S \subseteq \text{Proc} \times \text{Proc}$ such that $P \x S Q$ implies:

34
(1) for each barb β, if $P \downarrow \beta$ then $Q \downarrow \beta$; and

(2) if $P \rightarrow P'$ then there exists Q' such that $Q \rightarrow Q'$ and $P' \sim S \sim Q'$

where $P' \sim S \sim Q'$ means that there exist P'' and Q'' such that $P' \sim P''$, $P'' S Q''$, and $Q'' \sim Q'$. A barbed bisimulation up to \sim is a relation S such that both S and S^{-1} are barbed simulations up to \sim.

More generally, a barbed simulation up to \sim and restriction is a binary relation $S \subseteq \text{Proc} \times \text{Proc}$ such that $P S Q$ implies:

(1) for each barb β, if $P \downarrow \beta$ then $Q \downarrow \beta$, and

(2) if $P \rightarrow P'$ then there exists Q' such that $Q \rightarrow Q'$, and there exist P'', Q'', and names \bar{n} such that $P' \sim (\nu \bar{n}) P''$, $Q' \sim (\nu \bar{n}) Q''$, and $P'' S Q''$.

A barbed bisimulation up to \sim and restriction is a relation S such that both S and S^{-1} are barbed simulations up to \sim and restriction.

Proposition 6 If S is a barbed bisimulation up to \sim and restriction, then $S \subseteq \sim$. A fortiori, if S is a barbed bisimulation up to \sim, then $S \subseteq \sim$.

The proof of this proposition is in Appendix D.

For us, barbed equivalence is still only a stepping stone. One reason for this is that there are processes that are barbed equivalent but not strongly bisimilar or testing equivalent, such as $m(n).m(n).0$ and $m(n).0$. Moreover, barbed equivalence is far from being a congruence: it is not even closed under composition, as can be seen by comparing $(m(n).m(n).0) \mid (m(x).0)$ and $(m(n).0) \mid (m(x).0)$.

5.2.3 Barbed congruence

Barbed congruence, written \sim, is the relation on Proc obtained by strengthening barbed equivalence as follows:

$$P \sim Q \triangleq \forall R \in \text{Proc}(P \mid R \sim P \mid R)$$

Unlike barbed equivalence, barbed congruence implies testing equivalence. Therefore, whenever one wishes to prove a testing equivalence (e.g., a secrecy equation), it suffices to prove a barbed congruence. We establish the following properties of barbed congruence in Appendix D:
Proposition 7

(1) Barbed congruence is reflexive, transitive, and symmetric.

(2) Barbed congruence is a congruence on closed processes.

(3) Structural equivalence implies barbed congruence.

(4) Strong bisimilarity implies barbed congruence.

(5) Barbed congruence implies testing equivalence.

The converses of the implications in parts (3), (4), and (5) do not hold, as we show next.

That barbed congruence does not imply structural equivalence should be fairly evident. We prove it by first establishing a general property of barbed congruence. Let us say that a closed process \(P \) is stuck if and only if there is no \(\alpha \) and \(A \) such that \(P \xrightarrow{\alpha} A \). In other words, \(P \) is stuck if and only if it has no reactions and no barbs.

Proposition 8 If \(P \) is stuck then \(P \sim 0 \).

Proof Assuming that \(P \) is stuck, we need to show that \(P \| R \sim 0 \| R \) for any closed process \(R \). This holds because any barb or reaction of \(P \| R \) must be due to \(R \) alone. \(\square \)

This proposition implies, for example:

\[
\text{case } M \text{ of } \{x\}K \text{ in } P \sim \begin{cases}
P[N/x] & \text{if } M = \{N\}K \text{ for some } N \\ 0 & \text{otherwise} \end{cases}
\]

since \(\text{case } M \text{ of } \{x\}K \text{ in } P \) is stuck unless \(M \) is a ciphertext encrypted with \(K \). Since none of the rules of structural equivalence allows us to derive \(\text{case } M \text{ of } \{x\}K \text{ in } P \equiv 0 \), barbed congruence does not imply structural equivalence.

Secondly, barbed congruence does not imply strong bisimilarity. For instance, the processes \((\nu K)\pi(M)K \) and \((\nu K)\pi(M')K \) are not strongly bisimilar, but they are barbed congruent (as we prove in Section 5.3). Thus the spi calculus is different from both CCS and the pi calculus, in which barbed congruence coincides with strong bisimilarity [MS92]. On the other
hand, the spi calculus is like the higher-order pi calculus where strong bisimilarity is finer-grained than barbed congruence [San92].

Thirdly, testing equivalence does not imply barbed congruence. Setting $\tau.P \triangleq (\nu m)(m(*) \mid m(x).P)$ for $m \notin fn(P)$, $x \notin fv(P)$, we obtain the testing equivalence $P \simeq \tau.P$. (We prove this equivalence in Appendix D.) On the other hand, $P \simeq \tau.P$ does not hold in general. Moreover, barbed congruence is more sensitive to the branching structure of processes than testing equivalence.

5.3 The Underpinning Relation

In order to reason about attackers and their knowledge, we introduce the underpinning relation. We say that $x_1:\{_\}_{p_1}, \ldots, x_n:\{_\}_{p_n}$ underpins the agent A roughly if A is an agent that may contain occurrences of any of the variables x_1, \ldots, x_n, but no occurrences of any of the names p_1, \ldots, p_n. We write this:

$$x_1:\{_\}_{p_1}, \ldots, x_n:\{_\}_{p_n} \vdash A$$

Our intention is that A represents an attacker and that the variables x_1, \ldots, x_n represent ciphertexts that the attacker may have intercepted encrypted under the keys p_1, \ldots, p_n, which the attacker does not have. (Here we take all keys to be names as this suffices for our present purposes; but the general case, where a key is an arbitrary term, could also be interesting.)

Next we give a formal definition of the underpinning relation. An environment is a finite list of entries of the form $x:\{_\}_n$, where x is a variable and n is a name; all the variables must be distinct (but the names need not be). We let $dom(E)$ be the set of variables mentioned in the entries in E, and $keys(E)$ the set of names mentioned in the entries in E. When E is an environment, M a term, and A an agent, we define:

$$E \upharpoonright M \ \text{iff} \ \fv(M) \subseteq dom(E) \ \text{and} \ fn(M) \cap keys(E) = \emptyset$$

$$E \upharpoonright A \ \text{iff} \ \fv(A) \subseteq dom(E) \ \text{and} \ fn(A) \cap keys(E) = \emptyset$$

The relation \upharpoonright is the underpinning relation.

When $x:\{_\}_n$ occurs in an environment, we intend that x stands for a ciphertext of the form $\{M\}_n$. An E-closure is a substitution that fixes all the variables in E to appropriate ciphertexts; more precisely, an E-closure is a substitution σ of closed ciphertexts for variables such that $E \upharpoonright \sigma$ is derivable.
from the following rules:

(1) \[
\begin{array}{c}
\text{Closure (}) \quad \text{Closure Under)} \\
\hline \\
\emptyset \vdash \emptyset \\
\end{array}
\]

\[
\begin{array}{c}
E \vdash \sigma \\
E, x \notin \text{dom}(E) \\
\text{fv}(M) = \emptyset \\
\hline \\
E, x : \{-\}_n \vdash \sigma, \{M\}_n/x \\
\end{array}
\]

where \(\emptyset\) represents the empty environment, the empty substitution, and the empty set, and \(\sigma, \{M\}_n/x\) is the extension of \(\sigma\) that maps \(x\) to \(\{M\}_n\).

To prove secrecy properties, we would like to show that a process underpinned by an environment acts uniformly no matter which ciphertexts are substituted for the variables in the environment. At first sight one might think that if \(E \vdash P, E \vdash \sigma,\) and \(E \vdash \sigma',\) then \(P\sigma \sim P\sigma'\) on the reasoning that, since \(P\) cannot unwrap the ciphertexts in \(\sigma\) or \(\sigma',\) it will behave the same whether closed by one or the other. This would hold were it not for the presence of matching in the language. For example, \(E = x : \{-\}_m, y : \{-\}_m, P = [x = y] \overline{\mathcal{P}}(0), \sigma = [\{0\}_m/x, \{0\}_m/y],\) and \(\sigma' = [\{0\}_m/x, \{1\}_m/y]\) meet the conditions above, but \(P\sigma\) may output 0 whereas \(P\sigma'\) is stuck. Thus, \(P\) can act contingently on the ciphertexts even though it cannot decrypt them. However, if we insist that \(\sigma\) and \(\sigma'\) be injective (that is, \(x = y\) whenever \(x\sigma = y\sigma,\) and similarly for \(\sigma')\) then we obtain \(P\sigma \sim P\sigma'.\)

These informal arguments lead to the following results.

Lemma 9 Suppose that \(E \vdash P\) and \(E \vdash \sigma,\) and that \(\sigma\) is injective.

1. If \(P\sigma \triangleright Q'\) then there is a process \(Q\) with \(E \vdash Q, \text{fv}(Q) \subseteq \text{fv}(P), \text{fn}(Q) \subseteq \text{fn}(P),\) and \(Q' = Q\sigma\) such that, whenever \(E \vdash \sigma'\) and \(\sigma'\) is injective, \(P\sigma' \triangleright Q\sigma'.\)

2. If \(P\sigma \xrightarrow{\sigma} A'\) then there is an agent \(A\) with \(E \vdash A, \text{fv}(A) \subseteq \text{fv}(P), \text{fn}(A) \subseteq \text{fn}(P),\) and \(A' = A\sigma\) such that, whenever \(E \vdash \sigma'\) and \(\sigma'\) is injective, \(P\sigma' \xrightarrow{\sigma} A\sigma'.\)

The proof of this lemma is in Appendix E.

Proposition 10 Suppose that \(E \vdash \sigma\) and \(E \vdash \sigma',\) and that both \(\sigma\) and \(\sigma'\) are injective. Then \(\mathcal{S} = \{(P\sigma, P\sigma') \mid E \vdash P\}\) is a barbed bisimulation.

Proof Consider any commitment \(P\sigma \xrightarrow{\sigma} A'.\) By Lemma 9, there is an agent \(A\) with \(E \vdash A, A' = A\sigma,\) and \(P\sigma' \xrightarrow{\sigma} A\sigma'.\) Therefore, any barb of \(P\sigma\) is also exhibited by \(P\sigma',\) and any reaction of \(P\sigma\) may be matched up to \(\mathcal{S}\) by \(P\sigma'.\) Therefore, \(\mathcal{S}\) is a barbed simulation. Indeed by symmetry it is a barbed bisimulation. \(\square\)
This last proposition provides an easy way to prove some equivalences, as we now demonstrate with a small proof of a familiar secrecy property. We prove that, for any M and M':

$$(\nu K)\overline{\tau}\langle\{M\}_K\rangle \sim (\nu K)\overline{\tau}\langle\{M'\}_K\rangle$$

By (Struct Extrusion) and Proposition 5, it suffices to prove that:

$$\overline{\tau}\langle\{M\}_K\rangle \mid R \sim \overline{\tau}\langle\{M'\}_K\rangle \mid R$$

for any R such that $K \notin \text{fn}(R)$. But this follows from Proposition 10 with $E = x:\{-\}_K$, $P = \overline{\tau}(x) \mid R$, $\sigma = [{\{M\}_K}/x]$, and $\sigma' = [{\{M'\}_K}/x]$.

6 Proofs for the Examples

Having defined the semantics of the spi calculus and developed some proof techniques, we revisit the examples of the first half of the paper. We prove some of the authenticity and secrecy properties claimed in those examples. Our proofs are not quite as easy as those of special-purpose formalisms (e.g., [BAN89]), but they have a somewhat clearer status. With a few further techniques and tools, proofs such as ours could well become routine.

6.1 Proofs for the Example of Section 2.3.1

The example of Section 2.3.1 is our simplest one; it relies on restricted channels. Its main definitions are:

$$\begin{align*}
\text{Inst}(M) &\triangleq (\nu c_{AB})(\overline{c_{AB}}(M).0 \mid c_{AB}(x).F(x)) \\
\text{Inst}_{\text{spec}}(M) &\triangleq (\nu c_{AB})(\overline{c_{AB}}(M).0 \mid c_{AB}(x).F(M))
\end{align*}$$

We can prove the authenticity property $\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M)$ by exhibiting a simple barbed bisimulation.

Proposition 11 For any closed term M, $\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M)$.

Proof The only commitments of $\text{Inst}(M)$ and $\text{Inst}_{\text{spec}}(M)$ are:

$$\begin{align*}
\text{Inst}(M) &\xrightarrow{\tau} (\nu c_{AB})(0 \mid F(M)) \\
\text{Inst}_{\text{spec}}(M) &\xrightarrow{\tau} (\nu c_{AB})(0 \mid F(M))
\end{align*}$$
It follows that $\text{Inst}(M) \sim \text{Inst}_{\text{spec}}(M)$, that $\text{Inst}(M) \sim \text{Inst}_{\text{spec}}(M)$ (by Proposition 7(4)), and finally that $\text{Inst}(M) \sim \text{Inst}_{\text{spec}}(M)$ (by Proposition 7(5)). □

Turning to secrecy, we first prove a restricted version of the secrecy property claimed in Section 2.3.1:

Lemma 12 $\text{Inst}(M) \sim \text{Inst}(M')$ if $F(x)$ is $\overline{c}(*)$, for any closed terms M and M'.

Proof For any N, the only commitment of $\text{Inst}(N)$ is:

$$\text{Inst}(N) \xrightarrow{\tau} (\nu c_{AB})(0 \mid \overline{c}(*))$$

so clearly $\text{Inst}(M) \sim \text{Inst}(M')$. As in the previous proof, $\text{Inst}(M) \sim \text{Inst}(M')$ follows. □

Now a little calculation yields the full secrecy property:

Proposition 13 $\text{Inst}(M) \sim \text{Inst}(M')$ if $F(M) \sim F(M')$, for any closed terms M and M'.

Proof Let us write $\text{Inst}(M, (x)\overline{c}(*))$ for $\text{Inst}(M)$ in the special case where $F(x)$ is $\overline{c}(*)$ (as in Lemma 12); note that in this case $\text{Inst}(M)$ and $\text{Inst}_{\text{spec}}(M)$ are literally identical.

Assuming that c is a fresh name and y a fresh variable, we write $\tau.F(N)$ for $(\nu c)(\overline{c}(*) \mid c(y).F(N))$. For any closed N, we have:

$$(\nu c)(c_{AB}(x)\overline{c}(*) \mid c(y).F(N)) \sim c_{AB}(x)\tau.F(N)$$

because the only commitments of these processes are:

$$(\nu c)(c_{AB}(x)\overline{c}(*) \mid c(y).F(N)) \xrightarrow{\overline{c}_{AB}} (x)\tau.F(N)$$

$$_{\overline{c}_{AB}}$$

$c_{AB}(x)\tau.F(N) \xrightarrow{\overline{c}_{AB}} (x)\tau.F(N)$$

Hence we obtain the equation:

$$\text{Inst}_{\text{spec}}(N) \sim (\nu c)(\text{Inst}(N, (x)\overline{c}(*)) \mid c(y).F(N))$$ (1)

40
as follows:

\[
\begin{align*}
\text{Inst}_{\text{spec}}(N) &= (\nu c_{AB})(\overline{c_{AB}}(N) \cdot 0 \mid c_{AB}(x) \cdot F(N))) \\
&\simeq (\nu c_{AB})(\overline{c_{AB}}(N) \cdot 0 \mid c_{AB}(x) \cdot (\tau \cdot F(N))) \\
&\simeq (\nu c_{AB})(\overline{c_{AB}}(N) \cdot 0 \mid (\nu c)(c_{AB}(x) \cdot \overline{c(*)}) \mid c(y) \cdot F(N))) \\
&\equiv (\nu c)((\nu c_{AB})(\overline{c_{AB}}(N) \cdot 0 \mid c_{AB}(x) \cdot \overline{c(*)}) \mid c(y) \cdot F(N)) \\
&= (\nu c)(\text{Inst}(N, (x)\overline{c(*)}) \mid c(y) \cdot F(N))
\end{align*}
\]

making use of the “\(\tau\) law” \(F(N) \simeq \tau \cdot F(N)\) (Proposition 35), and of the facts that testing equivalence is a congruence (Proposition 1) and that strong bisimilarity implies testing equivalence (Proposition 7).

Finally, equation (1), Lemma 12, the authenticity property of Proposition 11, and the assumption \(F(M) \simeq F(M')\) justify the following calculation:

\[
\begin{align*}
\text{Inst}(M) &\simeq \text{Inst}_{\text{spec}}(M) \\
&\simeq (\nu c)(\text{Inst}(M, (x)\overline{c(*)}) \mid c(y) \cdot F(M)) \\
&\simeq (\nu c)(\text{Inst}(M', (x)\overline{c(*)}) \mid c(y) \cdot F(M')) \\
&\simeq \text{Inst}_{\text{spec}}(M') \\
&\simeq \text{Inst}(M')
\end{align*}
\]

\(\square\)

6.2 Proofs for the Example of Section 3.2.1

In the example of Section 3.2.1, the main definitions are:

\[
\begin{align*}
A(M) &\triangleq \overline{c_{AB}}(\{M\}_{K_{AB}}) \\
B &\triangleq c_{AB}(x), \text{case } x \text{ of } \{y\}_{K_{AB}} \text{ in } F(y) \\
\text{Inst}(M) &\triangleq (\nu K_{AB})(A(M) \mid B) \\
B_{\text{spec}}(M) &\triangleq c_{AB}(x), \text{case } x \text{ of } \{y\}_{K_{AB}} \text{ in } F(M) \\
\text{Inst}_{\text{spec}}(M) &\triangleq (\nu K_{AB})(A(M) \mid B_{\text{spec}}(M))
\end{align*}
\]

For the example of Section 2.3.1, which does not use cryptography, the proof of authenticity is simply a proof of strong bisimilarity. We cannot proceed analogously for the example of Section 3.2.1, because in fact \(\text{Inst}(M)\) and \(\text{Inst}_{\text{spec}}(M)\) are not strongly bisimilar; instead, we prove that \(\text{Inst}(M)\) and \(\text{Inst}_{\text{spec}}(M)\) are barbed congruent.
Proposition 14 For any closed term M, $\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M)$.

Proof We prove that $\text{Inst}(M) \sim \text{Inst}_{\text{spec}}(M)$; the claim then follows since barbed congruence implies testing equivalence according to Proposition 7.

Suppose that R is some arbitrary closed process and M is some arbitrary closed term. Without loss of generality, we assume that $K_{AB} \notin \text{fin}(R)$. Below we show that:

$$(\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B \mid R) \sim (\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B_{\text{spec}}(M) \mid R)$$

(2)

By Proposition 5(4), it follows that:

$$(\nu K_{AB})(\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B \mid R) \sim (\nu K_{AB})(\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B_{\text{spec}}(M) \mid R)$$

Since $K_{AB} \notin \text{fin}(R)$, we have:

$$\text{Inst}(M) \mid R \equiv (\nu K_{AB})(\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B \mid R)$$

and similarly:

$$\text{Inst}_{\text{spec}}(M) \mid R \equiv (\nu K_{AB})(\overline{\nu K_{AB}}(\{M\}_{K_{AB}}) \mid B_{\text{spec}}(M) \mid R)$$

Since barbed equivalence respects structural equivalence (by Proposition 5), we obtain:

$$\text{Inst}(M) \mid R \sim \text{Inst}_{\text{spec}}(M) \mid R$$

By the definition of barbed congruence, we conclude:

$$\text{Inst}(M) \sim \text{Inst}_{\text{spec}}(M)$$

It remains to give a proof of equation (2). For this proof, we let $\sigma = \{\{M\}_{K_{AB}}/x\}$ and introduce the following relation S:

$$PSQ \quad \text{iff} \quad P = B \mid R_1 \sigma \text{ and } Q = B_{\text{spec}}(M) \mid R_1 \sigma$$

for some R_1 such that $x:\{\}K_{AB} \vdash R_1$

Intuitively, the process $R_1 \sigma$ represents both A and an attacker that does not have K_{AB}. We prove that $S \cup \sim$ is a barbed bisimulation. This amounts to showing if PSQ then P and Q can each match the other’s bars and reactions.

If PSQ then there exists R_1 such that $P = B \mid R_1 \sigma$ and $Q = B_{\text{spec}}(M) \mid R_1 \sigma$, and $x:\{\}K_{AB} \vdash R_1$. Hence the bars of P are:

42
(1) $P \downarrow c_{AB}$ (from B),
(2) $P \downarrow \beta$ if $R_1 \sigma \downarrow \beta$.

Clearly Q exhibits these barbs too. The reactions of P are:

(1) if $R_1 \sigma \xrightarrow{\nu \bar{n}} (\nu \bar{n})\langle N \rangle R'$ and $P' \equiv (\nu \bar{n})(\text{case } N \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(y) \mid R')$
then $P \rightarrow P'$,
(2) if $R_1 \sigma \xrightarrow{\nu \bar{n}} R'$ and $P' \equiv B \mid R'$ then $P \rightarrow P'$.

(One can calculate these reactions via the commitment relation and Proposition 3. Without loss of generality, we assume that the names \bar{n} are fresh.)

In each case, Q can match these reactions of P:

(1) One of the reactions of Q is:

$$Q \rightarrow Q' \triangleq (\nu \bar{n})(\text{case } N \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(M) \mid R')$$

Now it suffices to show that $P' \sim Q'$. By Lemma 9(2), there exists R'_1 such that $x:\{\neg\}^{\langle B \rangle}_{AB} \vdash R'_1$ and $R'_1 \sigma = (\nu \bar{n})\langle N \rangle R'$. Therefore, R'_1 must have the form $(\nu \bar{n})\langle N_0 \rangle R_0$ with $N = N_0 \sigma$, $R' = R_0 \sigma$, and both $x:\{\neg\}^{\langle B \rangle}_{AB} \vdash N_0$ and $x:\{\neg\}^{\langle B \rangle}_{AB} \vdash R_0$. Since $x:\{\neg\}^{\langle B \rangle}_{AB} \vdash N_0$, either $N_0 \sigma$ is $\{M\}^{\langle B \rangle}_{AB}$ (if N_0 is x) or $N_0 \sigma$ is not a ciphertext encrypted with K_{AB}.

In the former case, we have:

$$P' \equiv (\nu \bar{n})(\text{case } \{M\}^{\langle B \rangle}_{AB} \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(y) \mid R')$$
$$\equiv (\nu \bar{n})(F(M) \mid R')$$
$$\equiv (\nu \bar{n})(\text{case } \{M\}^{\langle B \rangle}_{AB} \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(M) \mid R')$$
$$\equiv Q'$$

In the latter case, decryption gets stuck, and by appeal to Propositions 5 and 8 we get:

$$P' \equiv (\nu \bar{n})(\text{case } N \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(y) \mid R')$$
$$\sim (\nu \bar{n})(\emptyset \mid R')$$
$$\sim (\nu \bar{n})(\text{case } N \text{ of } \{y\}^{\langle B \rangle}_{AB} \text{ in } F(M) \mid R')$$
$$\equiv Q'$$

In both cases, we obtain $P' \sim Q'$ by Proposition 5.
(2) One of the reactions of Q is:

$$Q \rightarrow Q' \cong B_{\text{spec}}(M) \mid R'$$

Now it suffices to show that $P' \sim S \sim Q'$. By Lemma 9(2), there exists R'_1 such that $x: \{_\}_{K_{AB}} \vdash R'_1$ and $R'_1 \sigma = R'$. Therefore, $(B \mid R') SQ'$, and hence $P' \equiv S \equiv Q'$.

Almost identical reasoning shows that P can match the barbs and reactions of Q. We conclude that $S \cup \sim$ is a barbed bisimulation, so $S \subseteq \sim$.

In order to derive equation (2), we let $R_1 = e_{AB}(\langle x \rangle) \mid R$. We obtain:

$$e_{AB}(\{M\}_{K_{AB}}) \mid B \mid R \equiv B \mid R_1 \sigma$$

$$S \ B_{\text{spec}}(M) \mid R_1 \sigma$$

$$\equiv e_{AB}(\{M\}_{K_{AB}}) \mid B_{\text{spec}}(M) \mid R$$

Equation (2) follows since $S \subseteq \sim$ and by Proposition 5. \hfill \Box

For proving secrecy, we adopt the same general strategy as in Section 6.1. We first prove a restricted version of the secrecy property:

Lemma 15 $\text{Inst}(M) \sim \text{Inst}(M')$ if $F(x)$ is $\mathcal{S}(_)$, for any closed terms M and M'.

Proof Almost exactly as in the proof of Proposition 14, it suffices to prove the equation:

$$e_{AB}(\{M\}_{K_{AB}}) \mid B \mid R \sim e_{AB}(\{M'\}_{K_{AB}}) \mid B \mid R$$

for any closed process R such that $K_{AB} \notin \text{fn}(R)$, and any closed terms M and M'.

For the proof of this equation, we let $\sigma = \{\{M\}_{K_{AB}}/x\}$, $\sigma' = \{\{M'\}_{K_{AB}}/x\}$, and introduce the following relation S:

$$PSQ \quad \text{iff} \quad P = B \mid R_1 \sigma \quad \text{and} \quad Q = B \mid R_1 \sigma'$$

for some R_1 such that $x: \{_\}_{K_{AB}} \vdash R_1$

The relation $\{(R_1 \sigma, R_1 \sigma') \mid x: \{_\}_{K_{AB}} \vdash R_1\}$ is a barbed bisimulation, according to Proposition 10. We prove that $S \cup \sim$ is a barbed bisimulation. This amounts to showing if PSQ then P and Q can each match the other’s barbs and reactions.

If PSQ then there exists R_1 such that $P = B \mid R_1 \sigma$ and $Q = B \mid R_1 \sigma'$, and $x: \{_\}_{K_{AB}} \vdash R_1$. Hence the barbs of P are:
(1) $P \downarrow c_{AB}$ (from B),

(2) $P \downarrow \beta$ if $R_1\sigma \downarrow \beta$.

Clearly Q exhibits these barbs too, since $R_1\sigma$ and $R_1\sigma'$ are in a barbed bisimulation. The reactions of P are:

1. if $R_1\sigma \xrightarrow{c_{AB}} (\nu\bar{n})\langle N \rangle R'$ and $P' \equiv (\nu\bar{n})(\text{case } N \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\tau}(\ast) \mid R')$ then $P \rightarrow P'$,

2. if $R_1\sigma \xrightarrow{\tau} R'$ and $P' \equiv B \mid R'$ then $P \rightarrow P'$.

(As in the proof of Proposition 14, we assume that the names \bar{n} are fresh.)

In each case, Q can match these reactions of P:

1. By Lemma 9(2), there exists R'_1 such that $x:\{-\}_{K_{AB}} \vdash R'_1$, $R'_1\sigma = (\nu\bar{n})\langle N \rangle R'$, and $R_1\sigma' \xrightarrow{\text{AB}} (\nu\bar{n})\langle N_0\sigma' \rangle R_0\sigma'$. Therefore, R'_1 must have the form $(\nu\bar{n})\langle N \rangle R'_0$ with $N = N_0\sigma$, $R' = R_0\sigma$, and both $x:\{-\}_{K_{AB}} \vdash N_0$ and $x:\{-\}_{K_{AB}} \vdash R_0$. Since $R_1\sigma' \xrightarrow{\text{AB}} (\nu\bar{n})\langle N_0\sigma' \rangle R_0\sigma'$, we have:

$$Q \rightarrow Q' \overset{\Delta}{=} (\nu\bar{n})(\text{case } N_0\sigma' \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\tau}(\ast) \mid R_0\sigma')$$

Now it suffices to show that $P' \sim Q'$. Since $x:\{-\}_{K_{AB}} \vdash N_0$, either $N_0\sigma$ and $N_0\sigma'$ are $\{M\}_{K_{AB}}$ and $\{M'\}_{K_{AB}}$ respectively (if N_0 is x) or $N_0\sigma$ and $N_0\sigma'$ are not ciphertexts encrypted with K_{AB}.

In the former case, we have:

$$P' \equiv (\nu\bar{n})(\text{case } \{M\}_{K_{AB}} \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\tau}(\ast) \mid R')$$

$$\equiv (\nu\bar{n})(\overline{\tau}(\ast) \mid R')$$

$$\equiv (\nu\bar{n})(\overline{\tau}(\ast) \mid R_0\sigma)$$

$$\sim (\nu\bar{n})(\overline{\tau}(\ast) \mid R_0\sigma')$$

$$\equiv (\nu\bar{n})(\text{case } \{M'\}_{K_{AB}} \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\tau}(\ast) \mid R_0\sigma')$$

$$\equiv Q'$$

The step $(\nu\bar{n})(\overline{\tau}(\ast) \mid R') \sim (\nu\bar{n})(\overline{\tau}(\ast) \mid R_0\sigma')$ is justified by Proposition 10, since $x:\{-\}_{K_{AB}} \vdash (\nu\bar{n})(\overline{\tau}(\ast) \mid R_0)$.
In the latter case, decryption gets stuck, and by appeal to Propositions 5 and 8 we get:

\[P' \equiv (\nu \overline{\nu})(\text{case } N \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\nu}(\ast) | R') \]

\[\sim (\nu \overline{\nu})(\emptyset | R') \]

\[= (\nu \overline{\nu})(\emptyset | R_0 \sigma) \]

\[\sim (\nu \overline{\nu})(\emptyset | R_0 \sigma') \]

\[\sim (\nu \overline{\nu})(\text{case } N_0 \sigma' \text{ of } \{y\}_{K_{AB}} \text{ in } \overline{\nu}(\ast) | R_0 \sigma') \]

\[\equiv Q' \]

The step \((\nu \overline{\nu})(\emptyset | R') \sim (\nu \overline{\nu})(\emptyset | R_0 \sigma')\) is justified by Proposition 10, since \(x:\{-\}_{K_{AB}} \vdash (\nu \overline{\nu})(\emptyset | R_0)\).

In both cases, we obtain \(P' \sim Q'\) by Proposition 5.

(2) By Lemma 9(2), there exists \(R_1'\) such that \(x:\{-\}_{K_{AB}} \vdash R_1', R_1' \sigma = R', \)

and \(R_1 \sigma' \xrightarrow{\tau} R_1' \sigma'\), so:

\[Q \rightarrow Q' \equiv B \mid R_1' \sigma' \]

Clearly, \((B \mid R')\mathcal{S}Q'\), and hence \(P' \equiv \mathcal{S} \equiv Q'\).

The proof that \(P\) can match the bars and reactions of \(Q\) is symmetric. We conclude that \(\mathcal{S} \cup \sim\) is a barbed bisimulation, so \(\mathcal{S} \subseteq \sim\).

In order to derive equation (3) we let \(R_1 = \overline{c}_{AB} \langle x \rangle \mid R\). We obtain:

\[\overline{c}_{AB} \langle \{M\}_{K_{AB}} \rangle \mid B \mid R \equiv B \mid R_1 \sigma \]

\[\mathcal{S} \quad B \mid R_1 \sigma' \]

\[\equiv \overline{c}_{AB} \langle \{M'\}_{K_{AB}} \rangle \mid B \mid R \]

Equation (3) follows since \(\mathcal{S} \subseteq \sim\) and by Proposition 5. \(\square\)

The full secrecy property follows.

Proposition 16 \(\text{Inst}(M) \simeq \text{Inst}(M')\) if \(F(M) \simeq F(M')\), for any closed terms \(M\) and \(M'\).

Proof The proof is exactly analogous to that of Proposition 13, and relies on Proposition 14, Lemma 15, and the equation:

\[\text{Inst}_{\text{spec}}(N) \simeq (\nu c)(\text{Inst}(N, (x)\overline{\nu}(\ast)) \mid c(y).F(N)) \]

\(\square\)
6.3 Proofs for the Example of Section 3.2.2

The definitions of the example of Section 3.2.2 can be rephrased as follows:

\[
A(M) \triangleq (\nu K_{AB})(\overline{c_{AS}}\langle K_{AB}, K_{AS} \rangle \cdot \overline{c_{AB}}\langle M, K_{AB} \rangle)
\]
\[
S \triangleq c_{AS}(x), \text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{SB}}\langle y \rangle_{K_{SB}}
\]
\[
B \triangleq c_{SB}(x), \text{case } x \text{ of } \{y\}_{K_{SB}} \text{ in } B'(y)
\]
\[
B'(y) \triangleq c_{AB}(z), \text{case } z \text{ of } \{w\}_y \text{ in } F(w)
\]
\[
B_{spec}(M) \triangleq c_{SB}(x), \text{case } x \text{ of } \{y\}_{K_{SB}} \text{ in } B_{spec}(M, y)
\]
\[
B_{spec}'(M, y) \triangleq c_{AB}(z), \text{case } z \text{ of } \{w\}_y \text{ in } F(M)
\]
\[
\text{Inst}(M) \triangleq (\nu K_{AS})(\nu K_{SB})(A(M) \mid S \mid B)
\]
\[
\text{Inst}_{spec}(M) \triangleq (\nu K_{AS})(\nu K_{SB})(A(M) \mid S \mid B_{spec}(M))
\]

The proof of authenticity uses the same techniques as that of Section 6.2, but is more complex.

Proposition 17 For any closed term \(M \), \(\text{Inst}(M) \sim \text{Inst}_{spec}(M) \).

Proof Since barred congruence implies testing equivalence according to Proposition 7, it suffices to show that the two processes are barred congruent, that is, that:

\[
\text{Inst}(M) \mid R \sim \text{Inst}_{spec}(M) \mid R
\]

for any closed process \(R \). Without loss of generality, we assume that the names \(K_{AS}, K_{SB}, \) and \(K_{AB} \) do not occur free in \(R \).

Below we construct a relation \(S \subseteq \sim \) that pairs

\[
S \mid B \mid \overline{c_{AS}}\langle K_{AB}, K_{AS} \rangle \cdot \overline{c_{AB}}\langle M, K_{AB} \rangle \mid R
\]

and

\[
S \mid B_{spec}(M) \mid \overline{c_{AS}}\langle K_{AB}, K_{AS} \rangle \cdot \overline{c_{AB}}\langle M, K_{AB} \rangle \mid R
\]

Therefore, these processes are barred equivalent. Since barred equivalence is closed under restriction (by Proposition 5(4)), it follows that

\[
(\nu K_{AS})(\nu K_{SB})(S \mid B \mid \overline{c_{AS}}\langle K_{AB}, K_{AS} \rangle \cdot \overline{c_{AB}}\langle M, K_{AB} \rangle) \mid R
\]

and

\[
(\nu K_{AS})(\nu K_{SB})(S \mid B_{spec}(M) \mid \overline{c_{AS}}\langle K_{AB}, K_{AS} \rangle \cdot \overline{c_{AB}}\langle M, K_{AB} \rangle) \mid R
\]
are barbed equivalent. Equation (4) now follows from the facts that these two processes are structurally equivalent to \(\text{Inst}(M) \mid R \) and to \(\text{Inst}_{\text{spec}}(M) \mid R \) respectively (since the names \(K_{AS}, K_{SB}, \) and \(K_{AB} \) do not occur free in \(R \)), and that barbed equivalence respects structural equivalence (by Proposition 5).

It remains to define the relation \(S \) that pairs the processes (5) and (6). For this purpose, we let environment \(E \) and substitution \(\sigma \) be as follows:

\[
E \triangleq x_1: \{-\} K_{AS}, x_2: \{-\} K_{SB}, x_3: \{-\} K_{AB} \\
\sigma \triangleq \{K_{AB}\} K_{AS} / x_1, \{K_{AB}\} K_{SB} / x_2, \{M\} K_{AB} / x_3
\]

and we set:

\[
S \triangleq S_1 \cup S_2 \cup S_3
\]

where:

\[
S_1 \triangleq \{(S \mid B \mid R_1 \sigma, S \mid B_{\text{spec}}(M) \mid R_1 \sigma) \mid E \vdash R_1 \text{ and } \text{fv}(R_1) \subseteq \{x_1, x_3\}\}
\]

\[
S_2 \triangleq \{(B \mid R_2 \sigma, B_{\text{spec}}(M) \mid R_2 \sigma) \mid E \vdash R_2\}
\]

\[
S_3 \triangleq \{(B'(K_{AB}) \mid R_3 \sigma, B'_{\text{spec}}(M, K_{AB}) \mid R_3 \sigma) \mid E \vdash R_3\}
\]

The relation \(S_1 \) pairs the processes (5) and (6), since we can take \(R_1 \) to be \(\overline{c_{AS}}(x_1), \overline{c_{AB}}(x_3) \mid R \). Therefore, the relation \(S \) pairs the processes (5) and (6), as desired.

Intuitively, each relation \(S_i \) concerns a state (or class of states) reachable by the participants in the protocol. Each \(R_i \sigma \) represents an observer in possession of some or all of the three messages sent by the participants. In some cases, some of the participants are viewed as part of the observer process.

- \(S_1 \) concerns the initial state and states reachable when the observer receives the messages \(\{K_{AB}\} K_{AS} \) or \(\{M\} K_{AB} \) from \(A \).

- \(S_2 \) concerns the states reachable after \(S \) receives a message on \(c_{AS} \). There is no need to include the residue of \(S \) explicitly. In particular, the residue \(\overline{c_{SB}}(\{K_{AB}\} K_{SB}) \) may be considered part of the observer process \(R_2 \sigma \) in \(S_2 \).
• \(S \) concerns the states reachable after \(B \) receives the message \(\{K_{AB}\}_{K_{SB}} \) on \(c_{SB} \). (In the definition of \(S \), there is no need to consider the states reachable after \(B \) receives a message on \(c_{AB} \), as at that point the resulting processes are evidently barbed equivalent.)

The condition \(E \vdash R_i \) implies that none of the keys \(K_{AS}, K_{SB}, \) or \(K_{AB} \) occurs in \(R_i \). It also implies that \(\text{fv}(R_i) \subseteq \{x_1, x_2, x_3\} \). Depending on whether variable \(x_1, x_2, \) or \(x_3 \) occurs free in \(R_i \), the observer process \(R_i\sigma \) possesses ciphertext \(\{K_{AB}\}_{K_{AS}}, \{K_{AB}\}_{K_{SB}}, \) or \(\{M\}_{K_{AB}} \) respectively.

To complete the proof, it suffices to establish that \(S \subseteq \sim \). For this purpose, we invoke Proposition 6, and show that \(S \cup \Delta \) is a barbed bisimulation up to \(\sim \), where \(\Delta \) is the identity relation on closed processes. In light of Proposition 5(1), we show, for each \(i \in 1..3 \), that \(P, S; Q \) implies: (1) that any barb exhibited by \(P \) is also exhibited by \(Q \), and vice versa, and (2) that for any reaction \(P \to P' \) there is \(Q' \) with \(Q \to Q' \) and either \(P' \sim S \sim Q' \) or \(P' \sim Q' \), and vice versa. Condition (1) is obviously true, since \(P, S; Q \) implies that \(P \) and \(Q \) have almost identical structure. To show condition (2), we consider each \(S_i \) in turn.

• Suppose \(P, S, Q \), that is,

\[
P = S \mid B \mid R_i\sigma
\]
\[
Q = S \mid B_{\text{spec}}(M) \mid R_i\sigma
\]

with \(E \vdash R_i \) and \(\text{fv}(R_i) \subseteq \{x_1, x_3\} \). There are four ways in which a reaction \(P \to P' \) may be derived: (1) \(S \) receives the message \(\{K_{AB}\}_{K_{AS}} \) from \(R_i\sigma \); (2) \(S \) receives some other message from \(R_i\sigma \); (3) \(B \) receives some message from \(R_i\sigma \); (4) \(R_i\sigma \) reacts on its own.

In case (1), \(P' \) is:

\[
\overline{c_{SB}}(\{K_{AB}\}_{K_{SB}}) \mid B \mid C
\]

where \(C \) is a residue of \(R_i\sigma \) such that \(R_i\sigma \xrightarrow{\text{fv}} (\nu) \{K_{AB}\}_{K_{AS}}C \). By Lemma 9(2), \(C \) is of the form \(R'_i\sigma \) with \(E \vdash R'_i \). Thus, \(P' \) is:

\[
\overline{c_{SB}}(\{K_{AB}\}_{K_{SB}}) \mid B \mid R'_i\sigma
\]

For \(Q' \), we take:

\[
\overline{c_{SB}}(\{K_{AB}\}_{K_{SB}}) \mid B_{\text{spec}}(M) \mid R'_i\sigma
\]
We obtain $Q \rightarrow Q'$ and $P' \sim_{S_2} Q'$ by letting R_2 be $\overline{sb}(x_2) \mid R'_1$.

In case (2), we invoke Lemma 9(2) again, showing that the message received by S cannot be a ciphertext encrypted under K_{AS}. That lemma implies that if $R_1 \sigma \overline{sb} (\nu \bar{n})(N) C$ (where we may assume that the names \bar{n} are fresh) then there is a process R'_1 and a term N_1 with $E \vdash R'_1$, $E \vdash N_1$, $C = R'_1 \sigma$, and $N = N_1 \sigma$. So N cannot be of the form $\{N'\}_K$ unless N' is K_{AB}. Therefore, S gets stuck, and P' is barbed equivalent to:

$$B \mid (\nu \bar{n})(R'_1 \sigma)$$

by Propositions 8 and 5. For Q', we take:

$$B_{spec}(M) \mid (\nu \bar{n})(R'_1 \sigma)$$

We obtain $Q \rightarrow Q'$ and $P' \sim_{S_2} Q'$ by letting R_2 be $(\nu \bar{n})R'_1$ and noting that $E \vdash R'_1$ implies $E \vdash (\nu \bar{n})R'_1$.

In case (3), we invoke Lemma 9(2) again, showing this time that the message received by B cannot be a ciphertext encrypted under K_{SB}. In this case, that lemma says that if $R_1 \sigma \overline{sb} (\nu \bar{n})(N) C$ (where we may assume that the names \bar{n} are fresh) then there is a process R'_1 and a term N_1 with $E \vdash R'_1$, $E \vdash N_1$, $C = R'_1 \sigma$, and $N = N_1 \sigma$; in addition, $f_v(N_1) \subseteq f_v(R'_1)$, and hence $x_2 \notin f_v(N_1)$. So N cannot be of the form $\{N'\}_K$. Therefore, B gets stuck, and P' is barbed equivalent to:

$$S \mid (\nu \bar{n})(R'_1 \sigma)$$

by Propositions 8 and 5. For Q', we take:

$$S \mid (\nu \bar{n})(R'_1 \sigma)$$

We obtain $Q \rightarrow Q'$ and $P' \sim Q'$.

In case (4), P' has the form $S \mid B \mid C$ where, by Lemma 9(2), $C = R'_1 \sigma$ for some R'_1 such that $E \vdash R'_1$ and $f_v(R'_1) \subseteq f_v(R_1)$. Thus, P' is:

$$S \mid B \mid R'_1 \sigma$$

For Q', we take:

$$S \mid B_{spec}(M) \mid R'_1 \sigma$$

We obtain $Q \rightarrow Q'$ and $P' \sim_{S_1} Q'$.
Suppose $P \mathcal{S}_2 Q$, that is,

$$
P = B \mid R_2 \sigma \\
Q = B_{\text{spec}}(M) \mid R_2 \sigma
$$

with $E \vdash R_2$. There are three ways in which a reaction $P \rightarrow P'$ may be derived: (1) B receives the message $\{K_{AB}\}_{K_{SB}}$ from $R_2 \sigma$; (2) B receives some other message from $R_2 \sigma$; (3) $R_2 \sigma$ reacts on its own.

In case (1), P' is:

$$
B'(K_{AB}) \mid C
$$

where C is a residue of $R_2 \sigma$ such that $R_2 \sigma \xrightarrow{\text{spec}} (\nu)\langle\{K_{AB}\}_{K_{SB}}\rangle C$. By Lemma 9(2), C is of the form $R'_2 \sigma$ with $E \vdash R'_2$. Thus, P' is:

$$
B'(K_{AB}) \mid R'_2 \sigma
$$

For Q', we take:

$$
B'_{\text{spec}}(M, K_{AB}) \mid R'_2 \sigma
$$

We obtain $Q \rightarrow Q'$ and $P' \sim \mathcal{S}_2 \sim Q'$ by letting R_3 be R'_2.

In case (2), we invoke Lemma 9(2) again, showing that the message received by B cannot be a ciphertext encrypted under K_{SB}. That lemma implies that if $R_2 \sigma \xrightarrow{\text{spec}} (\nu\tilde{n})\langle N \rangle C$ (where we may assume that the names \tilde{n} are fresh) then there is a process R'_2 and a term N_2 with $E \vdash R'_2$, $E \vdash N_2$, $C = R'_2 \sigma$, and $N = N_2 \sigma$. So N cannot be of the form $\{N'\}_{K_{SB}}$ unless N' is K_{AB}. Therefore, B gets stuck, and P' is barbed equivalent to $(\nu\tilde{n})(R'_2 \sigma)$ by Propositions 8 and 5. For Q', we take $(\nu\tilde{n})(R'_2 \sigma)$. We obtain $Q \rightarrow Q'$ and $P' \sim Q'$.

In case (3), P' has the form $B \mid C$ where, by Lemma 9(2), $C = R'_2 \sigma$ for some R'_2 such that $E \vdash R'_2$. Thus, P' is:

$$
B \mid R'_2 \sigma
$$

For Q', we take:

$$
B_{\text{spec}}(M) \mid R'_2 \sigma
$$

We obtain $Q \rightarrow Q'$ and $P' \sim \mathcal{S}_2 \sim Q'$.

51
Suppose $P \mathcal{S}_3 Q$, that is,

$$
P = B'(K_{AB}) \mid R_3 \sigma \\
Q = B'_{s_{pc}}(M, K_{AB}) \mid R_3 \sigma
$$

with $E \vdash R_3$. There are three ways in which a reaction $P \rightarrow P'$ may be derived: (1) B receives the message $\{M\}_{K_{AB}}$ from $R_3 \sigma$; (2) B receives some other message from $R_3 \sigma$; (3) $R_3 \sigma$ reacts on its own.

In case (1), $P' = F(M) \mid C$, where C is a process such that $R_3 \sigma \xrightarrow{\nu \bar{n}} (\nu)\langle\{M\}_{K_{AB}}\rangle C$. We take Q' to be $F(M) \mid C$, obtaining $Q \rightarrow Q'$ and $P' \sim Q'$.

In case (2), we invoke Lemma 9(2) again, showing that the message received by B cannot be a ciphertext encrypted under K_{AB}. That lemma implies that if $R_3 \sigma \xrightarrow{\nu \bar{n}} (\nu)\langle\{M\}_{K_{AB}}\rangle C$. Then there is an agent R'_3 and a term N with $E \vdash R'_3$, $E \vdash N_3$, $C = R'_3 \sigma$, and $N = N_3 \sigma$. So N cannot be of the form $\{N'\}_{K_{AB}}$ unless N' is M. Therefore, B gets stuck, and P' is barbed equivalent to $(\nu \bar{n})(R'_3 \sigma)$ by Propositions 8 and 5. For Q', we take $(\nu \bar{n})(R'_3 \sigma)$. We obtain $Q \rightarrow Q'$ and $P' \sim Q'$.

In case (3), P' has the form $B'(K_{AB}) \mid C$ where, by Lemma 9(2), $C = R'_3 \sigma$ for some R'_3 such that $E \vdash R'_3$. Thus, P' is:

$$
B'(K_{AB}) \mid R'_3 \sigma
$$

For Q', we take:

$$
B'_{s_{pc}}(M, K_{AB}) \mid R'_3 \sigma
$$

We obtain $Q \rightarrow Q'$ and $P' \sim Q'$.

We can show by similar reasoning that if $Q \rightarrow Q'$ then there is P' with $P \rightarrow P'$ and either $P' \sim Q' \sim Q'$ or $P' \sim Q'$.

As before, we prove a simplified secrecy property as a step towards the full secrecy property.

Lemma 18 $\text{Inst}(M) \simeq \text{Inst}(M')$ if $F(x)$ is $\pi(\star)$, for any closed terms M and M'.

52
Proof Exactly as in the proof of Proposition 17, it suffices to exhibit a relation $S \subseteq \sim$ that pairs

$$S \mid B \mid \overline{c_{AS}}(\{K_{AB}\}_{K_{AS}})\overline{c_{AB}}(\{M\}_{K_{AB}}) \mid R \quad (7)$$

and

$$S \mid B \mid \overline{c_{AS}}(\{K_{AB}\}_{K_{AS}})\overline{c_{AB}}(\{M'\}_{K_{AB}}) \mid R \quad (8)$$

where R is any closed process such that the names K_{AS}, K_{SB}, and K_{AB} do not occur free in R.

We can obtain such a relation via the following definitions:

$$E \triangleq x_1:\{-\}K_{AS}, x_2:\{-\}K_{SB}, x_3:\{-\}K_{AB}$$

$$\sigma \triangleq [\{K_{AB}\}_{K_{AS}}/x_1, \{K_{AB}\}_{K_{SB}}/x_2, \{M\}_{K_{AB}}/x_3]$$

$$\sigma' \triangleq [\{K_{AB}\}_{K_{AS}}/x_1, \{K_{AB}\}_{K_{SB}}/x_2, \{M'\}_{K_{AB}}/x_3]$$

$$S_1 \triangleq \{(S \mid B \mid R_1\sigma, S \mid B \mid R_1\sigma') \mid E \vdash R_1 \text{ and } f_v(R_1) \subseteq \{x_1, x_3\}\}$$

$$S_2 \triangleq \{(B \mid R_2\sigma, B \mid R_2\sigma') \mid E \vdash R_2\}$$

$$S_3 \triangleq \{(B'(K_{AB}) \mid R_3\sigma, B'(K_{AB}) \mid R_3\sigma') \mid E \vdash R_3\}$$

$$S \triangleq S_1 \cup S_2 \cup S_3$$

The relation S_1 pairs the processes (7) and (8), since we can take R_1 to be $\overline{c_{AS}}(x_1)\overline{c_{AB}}(x_3) \mid R$, as before. Therefore, the relation S pairs the processes (7) and (8).

Moreover, via the same case analysis as in Proposition 17, and a broadly similar argument, we obtain that $S \subseteq \sim$. We show, for each $i \in 1..3$, that $P \ S_i Q$ implies: (1) that any barb exhibited by P is also exhibited by Q, and vice versa, and (2) that for any reaction $P \rightarrow P'$ there is Q' with $Q \rightarrow Q'$ and either $P' \sim S \sim Q'$ or $P' \sim S \sim Q'$, and vice versa. Condition (1) is true, since $P \ S_i Q$ implies that P and Q have almost identical structure; the differences in substitutions do not affect the barbs of P and Q. To show condition (2), we consider each S_i in turn.

• Suppose $P \ S_1 Q$, that is,

$$P = S \mid B \mid R_1\sigma$$

$$Q = S \mid B \mid R_1\sigma'$$

53
with \(E \vdash R_1 \) and \(fv(R_1) \subseteq \{ x_1, x_3 \} \). There are four ways in which a reaction \(P \rightarrow P' \) may be derived: (1) \(S \) receives the message \(\{ K_{AB} \}_{K_{AS}} \) from \(R_1 \sigma \); (2) \(S \) receives some other message from \(R_1 \sigma \); (3) \(B \) receives some message from \(R_1 \sigma \); (4) \(R_1 \sigma \) reacts on its own.

In case (1), \(P' \) is:

\[
\overline{c_{SB}}(\{ K_{AB} \}_{K_{SB}}) \mid B \mid C
\]

where \(C \) is a residue of \(R_1 \sigma \) such that \(R_1 \sigma \xrightarrow{K_{AS}} (\nu)\langle \{ K_{AB} \}_{K_{AS}} \rangle C \). By Lemma 9(2), \((\nu)\langle \{ K_{AB} \}_{K_{AS}} \rangle C \) can be written in the form \((\nu)\langle N_1 \rho \rangle R'_1 \sigma \) with \(E \vdash R'_1 \) and \(E \vdash N_1 \). Thus, \(P' \) is:

\[
\overline{c_{SB}}(\{ K_{AB} \}_{K_{SB}}) \mid B \mid R'_1 \sigma
\]

For \(Q' \), we take:

\[
\overline{c_{SB}}(\{ K_{AB} \}_{K_{SB}}) \mid B \mid R'_1 \sigma'
\]

By Lemma 9(2), \(R_1 \sigma' \xrightarrow{K_{AS}} (\nu)\langle N_1 \rho \rangle R_1 \sigma' \). Since \(N_1 \rho \) is \(\{ K_{AB} \}_{K_{AS}} \), we have that \(N_1 \rho' \) is also \(\{ K_{AB} \}_{K_{AS}} \). Hence, \(R_1 \sigma' \xrightarrow{K_{AS}} (\nu)\langle \{ K_{AB} \}_{K_{AS}} \rangle R_1 \sigma' \), so \(Q \rightarrow Q' \). Finally, we obtain \(P' \sim S_2 \sim Q' \) by letting \(R_2 \) be \(\overline{c_{SB}}(x_2) \mid R'_1 \).

In case (2), we invoke Lemma 9(2) again, showing that the message received by \(S \) cannot be a ciphertext encrypted under \(K_{AS} \). That lemma implies that if \(R_1 \sigma \xrightarrow{K_{AS}} (\nu \bar{n})\langle N \rangle C \) (where we may assume that the names \(\bar{n} \) are fresh) then there is a process \(R'_1 \) and a term \(N_1 \) with \(E \vdash R'_1 \), \(E \vdash N_1 \), \(C = R'_1 \sigma \), and \(N = N_1 \rho \). So \(N \) cannot be of the form \(\{ N' \}_{K_{AS}} \) unless \(N' \) is \(K_{AB} \). Therefore, \(S \) gets stuck, and \(P' \) is barbed equivalent to:

\[
B \mid (\nu \bar{n})(R'_1 \sigma)
\]

by Propositions 8 and 5. For \(Q' \), we take:

\[
B \mid (\nu \bar{n})(R'_1 \sigma')
\]

By Lemma 9(2), \(R_1 \sigma' \xrightarrow{K_{AS}} (\nu \bar{n})\langle N_1 \rho \rangle R'_1 \sigma' \); in addition, \(N_1 \rho \) cannot be of the form \(\{ N' \}_{K_{AS}} \) either. Hence we obtain \(Q \rightarrow Q' \). Finally, we obtain \(P' \sim S_2 \sim Q' \) by letting \(R_2 \) be \((\nu \bar{n})R'_1 \) and noting that \(E \vdash R'_1 \) implies \(E \vdash (\nu \bar{n})R'_1 \).

In case (3), we invoke Lemma 9(2) again, showing this time that the message received by \(B \) cannot be a ciphertext encrypted under \(K_{SB} \).
In this case, that lemma says that if \(R_1 \sigma \xrightarrow{\text{\#1B}} (\nu \vec{n})(N)C \) (where we may assume that the names \(\vec{n} \) are fresh) then there is a process \(R'_1 \) and a term \(N_1 \) with \(E \vdash R'_1 \), \(E \vdash N_1 \), \(C = R'_1 \sigma \), and \(N = N_1 \sigma \); in addition, \(f_v(N_1) \subseteq f_v(R_1) \), and hence \(x_2 \notin f_v(N_1) \). So \(N \) cannot be of the form \(\{N'\}_{K_{\text{\#29}}} \). Therefore, \(B \) gets stuck, and \(P' \) is barbed equivalent to:

\[
S \mid (\nu \vec{n})(R'_1 \sigma)
\]

by Propositions 8 and 5. For \(Q' \), we take:

\[
S \mid (\nu \vec{n})(R'_1 \sigma')
\]

By Lemma 9(2), \(R_1 \sigma' \xrightarrow{\text{\#1B}} (\nu \vec{n})(N_1 \sigma')R'_1 \sigma' \); in addition, \(N_1 \sigma' \) cannot be of the form \(\{N'\}_{K_{\text{\#29}}} \) either. Hence we obtain \(Q \to Q' \). Finally, we obtain \(P' \sim Q' \) from Proposition 10, since \(\sigma \) and \(\sigma' \) are injective, \(P' \) is \((S \mid (\nu \vec{n})R'_1)\sigma, Q' \) is \((S \mid (\nu \vec{n})R'_1)\sigma' \), and barbed equivalence is the greatest barbed bisimulation.

In case (4), \(P' \) has the form \(S \mid B \mid C \) where \(R_1 \sigma \xrightarrow{\text{\#1B}} C \) and, by Lemma 9(2), \(C = R'_1 \sigma \) for some \(R'_1 \) such that \(E \vdash R'_1 \) and \(f_v(R'_1) \subseteq f_v(R_1) \). Thus, \(P' \) is:

\[
S \mid B \mid R'_1 \sigma
\]

For \(Q' \), we take:

\[
S \mid B \mid R'_1 \sigma'
\]

By Lemma 9(2), \(R_1 \sigma' \xrightarrow{\text{\#1B}} R'_1 \sigma' \), so \(Q \to Q' \). Finally, we have \(P' \sim S_1 \sim Q' \).

- Suppose \(P \mathcal{S}_2 \mathcal{Q} \), that is,

\[
\begin{align*}
P & = B \mid R_2 \sigma \\
Q & = B \mid R_2 \sigma'
\end{align*}
\]

with \(E \vdash R_2 \). There are three ways in which a reaction \(P \to P' \) may be derived: (1) \(B \) receives the message \(\{K_{AB}\}_{K_{\text{\#29}}} \) from \(R_2 \sigma \); (2) \(B \) receives some other message from \(R_2 \sigma \); (3) \(R_2 \sigma \) reacts on its own.

In case (1), \(P' \) is:

\[
B'(K_{AB}) \mid C
\]

55
where C is a residue of $R_2\sigma$ such that $R_2\sigma \xrightarrow{\text{Res}} (\nu)\langle\{K_{AB}\}_{K_{SB}}\rangle C$. By Lemma 9(2), $(\nu)\langle\{K_{AB}\}_{K_{SB}}\rangle C$ can be written in the form $(\nu)\langle N_2\sigma\rangle R'_2\sigma$ with $E \vdash R'_2$ and $E \vdash N_2$. Thus, P' is:

$$B'(K_{AB}) \mid R'_2\sigma$$

For Q', we take:

$$B'(K_{AB}) \mid R'_2\sigma'$$

By Lemma 9(2), $R_2\sigma' \xrightarrow{\text{Res}} (\nu)\langle N_2\sigma'\rangle R_2\sigma'$. Since $N_2\sigma$ is $\{K_{AB}\}_{K_{SB}}$, we have that $N_2\sigma'$ is also $\{K_{AB}\}_{K_{SB}}$. Hence, $R_2\sigma' \xrightarrow{\text{Res}} (\nu)\langle\{K_{AB}\}_{K_{SB}}\rangle R_2\sigma'$, so $Q \rightarrow Q'$. Finally, we obtain $P' \sim S_3 \sim Q'$ by letting R_3 be R'_2.

In case (2), we invoke Lemma 9(2) again, showing that the message received by B cannot be a ciphertext encrypted under K_{SB}. That lemma implies that if $R_2\sigma \xrightarrow{\text{Res}} (\nu)\langle\{K_{AB}\}_{K_{SB}}\rangle C$ (where we may assume that the names \bar{n} are fresh) then there is a process R'_2 and a term N_2 with $E \vdash R'_2$, $E \vdash N_2$, $C = R'_2\sigma$, and $N = N_2\sigma$. So N cannot be of the form $\{N'\}_{K_{SB}}$ unless N' is K_{AB}. Therefore, B gets stuck, and P' is barbed equivalent to $(\nu\bar{n})(\langle\nu\bar{n}\rangle)^{\bullet}$ by Propositions 8 and 5. For Q', we take $(\nu\bar{n})(\langle\nu\bar{n}\rangle)^{\bullet}$. By Lemma 9(2), $R_2\sigma' \xrightarrow{\text{Res}} (\nu)\langle N_2\sigma'\rangle R_2\sigma'$; in addition, $N_2\sigma'$ cannot be of the form $\{N'\}_{K_{SB}}$ either. Hence we obtain $Q \rightarrow Q'$. Finally, we obtain $P' \sim Q'$ from Proposition 10, since σ and σ' are injective, P' is $((\nu\bar{n})(\langle\nu\bar{n}\rangle)^{\bullet})\sigma$, Q' is $((\nu\bar{n})(\langle\nu\bar{n}\rangle)^{\bullet})\sigma'$, and barbed equivalence is the greatest barbed bisimulation.

In case (3), P' has the form $B \mid C$ where $R_2\sigma \xrightarrow{\sigma} C$ and, by Lemma 9(2), $C = R'_2\sigma$ for some R'_2 such that $E \vdash R'_2$. Thus, P' is:

$$B \mid R'_2\sigma$$

For Q', we take:

$$B \mid R'_2\sigma'$$

By Lemma 9(2), $R_2\sigma' \xrightarrow{\sigma} R'_2\sigma'$, so $Q \rightarrow Q'$. Finally, we have $P' \sim S_3 \sim Q'$.

- Suppose $P \sim S_3 \sim Q$, that is,

$$P = B'(K_{AB}) \mid R_3\sigma$$

$$Q = B'(K_{AB}) \mid R_3\sigma'$$

56
with \(E \vdash R_3 \). There are three ways in which a reaction \(P \rightarrow P' \) may be derived: (1) \(B \) receives the message \(\{M\}_{AB} \) from \(R_3 \sigma \); (2) \(B \) receives some other message from \(R_3 \sigma \); (3) \(R_3 \sigma \) reacts on its own.

In case (1), \(P' \equiv \pi(\ast) \mid C \), where \(C \) is a process such that \(R_3 \sigma \xrightarrow{n} (\nu)\langle M \rangle_{AB} C \). According to Lemma 9(2), \((\nu)\langle M \rangle_{AB} C \) can be written in the form \((\nu)\langle N_3 \sigma \rangle R_3' \sigma \) with \(E \vdash R_3' \) and \(E \vdash N_3 \). In addition, \(R_3 \sigma' \xrightarrow{n} (\nu)\langle M' \rangle_{AB} R_3' \sigma' \), since \(N_3 \) must be \(x_3 \). Hence, we take \(Q' \) to be \(\pi(\ast) \mid R_3' \sigma' \), obtaining \(Q \rightarrow Q' \). Finally, we obtain \(P' \equiv Q' \) from Proposition 10, since \(\sigma \) and \(\sigma' \) are injective, \(P' \) is \((\pi(\ast) \mid R_3' \sigma) \), \(Q' \) is \((\pi(\ast) \mid R_3' \sigma') \), and barbed equivalence is the greatest barbed bisimulation.

In case (2), we invoke Lemma 9(2) again, showing that the message received by \(B \) cannot be a ciphertext encrypted under \(K_{AB} \). That lemma implies that if \(R_3 \sigma \xrightarrow{n} (\nu \bar{n})\langle N \rangle C \) (where we may assume that the names \(\bar{n} \) are fresh) then there is an agent \(R_3' \) and a term \(N \) with \(E \vdash R_3' \), \(E \vdash N \), \(C = R_3' \sigma \), and \(N = N_3 \sigma \). So \(N \) cannot be of the form \(\{N'\}_{AB} \) unless \(N' \) is \(M \). Therefore, \(B \) gets stuck, and \(P' \) is barbed equivalent to \((\nu \bar{n})(R_3' \sigma) \) by Propositions 8 and 5. For \(Q' \), we take \((\nu \bar{n})(R_3' \sigma') \). By Lemma 9(2), \(R_3 \sigma' \xrightarrow{n} (\nu \bar{n})\langle N_3 \sigma' \rangle R_3' \sigma' \); in addition, \(N_3 \sigma' \) cannot be of the form \(\{N'\}_{AB} \) either. Hence we obtain \(Q \rightarrow Q' \). Finally, we obtain \(P' \equiv Q' \) from Proposition 10, since \(\sigma \) and \(\sigma' \) are injective, \(P' \) is \(((\nu \bar{n})R_3') \sigma \), \(Q' \) is \(((\nu \bar{n})R_3') \sigma' \), and barbed equivalence is the greatest barbed bisimulation.

In case (3), \(P' \) has the form \(B'(K_{AB}) \mid C \) where \(R_3 \sigma \xrightarrow{\ast} C \) and, by Lemma 9(2), \(C = R_3' \sigma \) for some \(R_3' \) such that \(E \vdash R_3' \). Thus, \(P' \) is:

\[
B'(K_{AB}) \mid R_3' \sigma
\]

For \(Q' \), we take:

\[
B'(K_{AB}) \mid R_3' \sigma'
\]

By Lemma 9(2), \(R_3 \sigma' \xrightarrow{n} R_3' \sigma' \), so \(Q \rightarrow Q' \). Finally, we have \(P' \equiv Q' \).

By symmetry, we have also a proof that if \(Q \rightarrow Q' \) then there is \(P' \) with \(P \rightarrow P' \) and either \(P' \equiv Q' \) or \(P' \equiv Q' \).

The full secrecy property follows.
Proposition 19 \(\text{Inst}(M) \simeq \text{Inst}(M') \) if \(F(M) \simeq F(M') \), for any closed terms \(M \) and \(M' \).

Proof The argument is similar to that in Proposition 13. Given the authenticity property (Proposition 17) and the specialised secrecy property (Lemma 18), it is enough to prove:

\[
\text{Inst}_{\text{spec}}(N) \simeq (\nu c)(\text{Inst}(N, (x)\overline{c}(\ast)) \mid c(y), F(N))
\]

for all \(N \).

6.4 Formalisation of the Attack of Section 3.2.3

Here we prove that the authenticity equation discussed in Section 3.2.3 does not hold. We do this by formalising the replay attack sketched there.

The definitions of \(\text{Sys} \) and \(\text{Sys}_{\text{spec}} \) are given in Section 3.2.3. We prove:

Proposition 20 If \(I \) is \((i, j, M) \), \(I' \) is \((i, j, M') \), and \(M \) and \(M' \) are different closed terms, then there exists \(F \) such that \(\text{Sys}(I, I') \not\equiv \text{Sys}_{\text{spec}}(I, I') \).

Proof We define \(F(x, y, z) \) as \(\overline{c}(z) \) where \(c \) is a new name. According to the definition of testing equivalence, it suffices to construct a test \((R, \beta)\) such that \(\text{Sys}(I, I') \) passes \((R, \beta)\) but \(\text{Sys}_{\text{spec}}(I, I') \) does not pass \((R, \beta)\).

For \(\beta \), we take \(\overline{d} \) where \(d \) is a name that does not occur free in \(\text{Sys}_{\text{spec}}(I, I') \). For \(R \), we take:

\[
c_S(u), \overline{c_S}(u), \overline{c_S}(u), c_j(x), \overline{c_j}(x), \overline{c_j}(x), c(y), c(z), [y \text{ is } z] \overline{d}(\ast)
\]

This process duplicates a message \(u \) sent on \(c_S \) and a message \(x \) sent on \(c_j \), receives two messages \(y \) and \(z \) through \(c \), and finally sends a message on \(d \) if \(y \) and \(z \) are equal. Intuitively, this process can be understood as an attacker that replays an encrypted key \(u \) and some encrypted data \(x \) from \(i \), and signals on \(d \) if the replay attack may have worked, that is, if two identical messages \(y \) and \(z \) appear on \(c \).

The parallel composition of \(R \) with \(\text{Sys}(I, I') \) may eventually exhibit \(\overline{d} \), because \(y \) and \(z \) may both equal \(M \) or \(M' \), as a result of the message duplications on \(c_S \) and \(c_j \). Therefore, \(\text{Sys}(I, I') \) passes \((R, \beta)\).

In contrast, the parallel composition of \(R \) with \(\text{Sys}_{\text{spec}}(I, I') \) never exhibits \(\overline{d} \), because each of \(M \) and \(M' \) will be transmitted at most once on \(c \), so \(y \) and \(z \) cannot match. Therefore, \(\text{Sys}_{\text{spec}}(I, I') \) does not pass \((R, \beta)\).
6.5 Proofs for the Example of Section 3.2.4

As in Section 3.2.4, we consider a system with a server S and n other principals, which we call $1, 2, \ldots$ We let $P_{rn} = 1..n$, and we use the metavariables i and j to range over P_{rn}. Each principal has an input channel; these input channels have the names c_1, c_2, \ldots, c_n and c_S. The server shares a pair of keys with each other principal; principal i uses key K_{is} to send to S and key K_{Si} to receive from S, for each $i \in P_{rn}$. The system is parameterised by a list of instances, I_1, \ldots, I_m, indexed by the set $Ins = 1..m$, and a single abstraction F such that $F(\bar{i}, \bar{j}, M)$ is a process for any instance (i, j, M). We use the metavariable k to range over Ins.

For an instance $I = (i, j, M)$, the informal description of the protocol is:

Message 1 $i \rightarrow S$: i on c_S
Message 2 $S \rightarrow i$: N_S on c_i
Message 3 $i \rightarrow S$: $i, \{i, i, j, K_{AB}, N_S\}_{K_{is}}$ on c_S
Message 4 $S \rightarrow j$: $*$ on c_j
Message 5 $j \rightarrow S$: N_B on c_S
Message 6 $S \rightarrow j$: $\{S, i, j, K_{AB}, N_B\}_{K_{sj}}$ on c_j
Message 7 $i \rightarrow j$: $i, \{M\}_{K_{AB}}$ on c_j

We rephrase the formal description of the protocol through the following definitions:

$A1(i, j, M) \triangleq c_S(\bar{i}) \mid A2(i, j, M)$
$A2(i, j, M) \triangleq c_i(x). (\nu K_{AB})(c_S((\bar{i}, \{i, i, j, K, x\}_{K_{is}})) \mid c_J((\bar{j}, \{M\}_K)))$
$S1 \triangleq c_S(x). \Pi_{i \in P_{rn}} [x \text{ is } \bar{i}] (\nu N_S)(\bar{i}(N_S) \mid S2(i, N_S))$
$S2(i, N) \triangleq c_S(x). \text{let } (y_1, y_2) = x \text{ in }$
$[y_1 \text{ is } \bar{i}] \text{ case } y_2 \text{ of } \{z_1, z_2, z_3, z_4, z_5\}_{K_{is}} \text{ in }$
$\Pi_{j \in P_{rn}} [z_1 \text{ is } \bar{j}] [z_2 \text{ is } \bar{j}] [z_3 \text{ is } \bar{j}] [z_4 \text{ is } \bar{j}] [z_5 \text{ is } N] S3(i, j, z_4)$
$S3(i, j, K) \triangleq \overline{c}_j(\ast) \mid S4(i, j, K)$
$S4(i, j, K) \triangleq c_S(x). \overline{c}_j(\{S, i, j, K, x\}_{K_{sj}})$
$B1(j, F) \triangleq c_j(x). (\nu N_B)(c_S(\bar{N}_B) \mid B2(j, F, N_B))$
$B2(j, F, N) \triangleq c_j(x). \text{case } x \text{ of } \{y_1, y_2, y_3, y_4, y_5\}_{K_{sj}} \text{ in }$
$\Pi_{i \in P_{rn}} [y_1 \text{ is } S] [y_2 \text{ is } \bar{j}] [y_3 \text{ is } \bar{j}] [y_4 \text{ is } \bar{j}] [y_5 \text{ is } N] B3(i, j, F, y_4)$
$B3(i, j, F, K) \triangleq c_j(x). \text{let } (y_1, y_2) = x \text{ in }$
$[y_1 \text{ is } \bar{j}] \text{ case } y_2 \text{ of } \{z\}_K \text{ in } F(\bar{i}, \bar{j}, z)$
\[
S_{\text{sys}}(I_1, \ldots, I_m) \triangleq (\nu K_{iS}^{i \in \text{Prn}})(\nu K_{Sj}^{j \in \text{Prn}}) \\
(\prod_{k \in \text{Ins}} A I(I_k) \parallel !S I \parallel \prod_{j \in \text{Prn}} !B I(j, F))
\]

We rephrase the specification as well:

\[
A I_{\text{spec}}((i, j, M), F) \triangleq (\nu p)(A I(i, j, p) \parallel p(x), F(i, j, M))
\]
\[
F_{\text{spec}}(i, j, p) \triangleq \overline{p}(*)
\]
\[
S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m) \triangleq (\nu K_{iS}^{i \in \text{Prn}})(\nu K_{Sj}^{j \in \text{Prn}}) \\
(\prod_{k \in \text{Ins}} A I_{\text{spec}}(I_k, F) \parallel !S I \parallel \prod_{j \in \text{Prn}} !B I(j, F_{\text{spec}}))
\]

In this section, we prove the stated authenticity and secrecy properties, namely:

\[
S_{\text{sys}}(I_1, \ldots, I_m) \cong S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m),
\]
for any instances \(I_1, \ldots, I_m\).
\[
S_{\text{sys}}(I_1, \ldots, I_m) \cong S_{\text{sys}}(J_1, \ldots, J_m),
\]
if each pair \((I_1, J_1), \ldots, (I_m, J_m)\) is indistinguishable.

Proposition 21 For any instances \(I_1, \ldots, I_m\),

\[
S_{\text{sys}}(I_1, \ldots, I_m) \cong S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m)
\]

Proof Let \(I_1, \ldots, I_m\) be a list of instances, with \(\text{Ins} = 1..m\). We begin by reducing the problem to one involving finite compositions rather than replications, and give a bisimulation proof after this reduction.

First, we group the replications in \(S_{\text{sys}}(I_1, \ldots, I_m)\) and \(S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m)\) using Proposition 30:

\[
S_{\text{sys}}(I_1, \ldots, I_m) \cong (\nu K_{iS}^{i \in \text{Prn}})(\nu K_{Sj}^{j \in \text{Prn}}) \\
(\prod_{k \in \text{Ins}} A I(I_k) \parallel !S I \parallel \prod_{j \in \text{Prn}} !B I(j, F))
\]

(9)

\[
S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m) \cong (\nu K_{iS}^{i \in \text{Prn}})(\nu K_{Sj}^{j \in \text{Prn}}) \\
(\prod_{k \in \text{Ins}} A I_{\text{spec}}(I_k, F) \parallel !S I \parallel \prod_{j \in \text{Prn}} !B I(j, F_{\text{spec}}))
\]

(10)

Further, we apply Proposition 29 to the right-hand sides of (9) and (10); Proposition 29 implies that, to prove \(S_{\text{sys}}(I_1, \ldots, I_m) \cong S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m)\), it suffices to prove:

\[
f S_{\text{sys}}(I_1, \ldots, I_m, r) \cong f S_{\text{sys}}_{\text{spec}}(I_1, \ldots, I_m, r)
\]

(11)
for all $r \geq 0$, where
\[
\begin{align*}
\mathit{fSys}(I_1, \ldots, I_m, r) & \triangleq (\nu K_{iS})_{i \in \mathcal{P}_{\text{prn}}} (\nu K_{jS})_{j \in \mathcal{P}_{\text{prn}}} \\
& \quad \left(\prod_{k \in \mathcal{I}_{\text{ns}}} A1(i_k) \mid \Pi_{s \in 1..r}(SI \mid \Pi_{j \in \mathcal{P}_{\text{prn}}} B1(j, F)) \right)
\end{align*}
\]
\[
\mathit{fSys}_{\text{spec}}(I_1, \ldots, I_m, r) \triangleq (\nu K_{iS})_{i \in \mathcal{P}_{\text{prn}}} (\nu K_{jS})_{j \in \mathcal{P}_{\text{prn}}} \\
& \quad \left(\prod_{k \in \mathcal{I}_{\text{ns}}} A1_{\text{spec}}(I_k, F) \mid \Pi_{s \in 1..r}(SI \mid \Pi_{j \in \mathcal{P}_{\text{prn}}} B1(j, F_{\text{spec}})) \right)
\]

Thus, we have eliminated replications.

Next we reformulate (11) by pulling restrictions to the top level, and inserting certain additional τ steps. For this purpose, we use the following auxiliary definitions:

\[
\begin{align*}
A1'(i, j, M, K) & \triangleq \overline{c_5}\langle \bar{\xi} \rangle \mid A2'(i, j, M, K) \\
A2'(i, j, M, K) & \triangleq c_i(x).\overline{c_5}\langle \bar{\xi}, \{\bar{\xi}, \bar{\zeta}, j, K, x\}_{K_{iL}} \rangle \mid \overline{c_5}\langle \bar{\xi}, \{M\}_{K} \rangle \\
S1'(N) & \triangleq c_1(x).\Pi_{i \in \mathcal{P}_{\text{prn}}}x \text{ is } \bar{\xi} \rangle \langle \overline{c_5}\langle \bar{\xi} \rangle \mid S2(i, N) \\
B1'(j, F, N) & \triangleq c_j(x).\overline{c_5}\langle \bar{\xi} \rangle \langle B2(j, F, N) \rangle
\end{align*}
\]

Lemmas 36 and 37 yield:

\[
\begin{align*}
A1(I) & \simeq (\nu K_{AB})A1'(I, K_{AB}) \quad (12) \\
A2(I) & \simeq (\nu K_{AB})A2'(I, K_{AB}) \quad (13) \\
S1 & \simeq (\nu N_S)S1'(N_S) \quad (14) \\
B1(j, F) & \simeq (\nu N_B)B1'(j, F, N_B) \quad (15)
\end{align*}
\]

Moreover, equation (12) yields:

\[
\begin{align*}
A1_{\text{spec}}(i, j, M) & \simeq (\nu K_{AB})(\nu p)(A1'(i, j, p, K_{AB}) \mid p(x).F(\bar{\xi}, \bar{\zeta}, M))(16)
\end{align*}
\]

We also introduce the sets of names:

\[
\begin{align*}
\{p_k \mid k \in \mathcal{I}_{\text{ns}}\} \\
\{K_{ABk} \mid k \in \mathcal{I}_{\text{ns}}\} \\
\{N_Ss \mid s \in 1..r\} \\
\{N_{Bjt} \mid j \in \mathcal{P}_{\text{prn}} \& t \in 1..r\}
\end{align*}
\]
All the names listed are assumed distinct and fresh. Given that $\tau.F$ is short for the abstraction $(x)\tau.F(x)$, we obtain:

\[
\begin{align*}
\mathit{fSys}(I_1, \ldots, I_m, r) & \simeq (\nu K_{I_1} \in \mathit{Prt})(\nu K_{I_2} \in \mathit{Prt}) \\
& \quad (\nu K_{AB} \in \mathit{Ins})(\nu N_{S_1} \in \mathit{T}) \left(\prod_{i \in \mathit{Prt}} \mathit{A}I'(I_i, K_{AB}) \mid \prod_{x \in \mathit{T}} \mathit{S}I'(N_{S_1}) \mid \\
& \quad \prod_{j \in \mathit{Prt}} \mathit{B}I'(j, \tau.F, N_{B_{j1}}) \right) \\
\mathit{fSys}_{spec}(I_1, \ldots, I_m, r) & \simeq (\nu K_{I_1} \in \mathit{Prt})(\nu K_{I_2} \in \mathit{Prt})(\nu p_k \in \mathit{Ins}) \\
& \quad (\nu K_{AB} \in \mathit{Ins})(\nu N_{S_1} \in \mathit{T}) \left(\prod_{i \in \mathit{Prt}} \mathit{A}I'(i, j, p_k, K_{AB}) \mid \\
& \quad \prod_{x \in \mathit{T}} \mathit{S}I'(N_{S_1}) \mid \\
& \quad \prod_{j \in \mathit{Prt}} \mathit{B}I'(j, \tau.F, N_{B_{j1}}) \right)
\end{align*}
\]

The proof of (17) and (18) is in three steps. First, we expose all the restrictions in the processes $\mathit{fSys}(I_1, \ldots, I_m, r)$ and $\mathit{fSys}_{spec}(I_1, \ldots, I_m, r)$ by rewriting with equations (12), (13), (14), (15), and (16). Second, we use the rules of structural equivalence to group all the restrictions at the top level of the processes. Third, we use the τ law ($\tau.P \simeq P$, Proposition 35) to insert a τ step before each call to F in $\mathit{fSys}(I_1, \ldots, I_m, r)$. (The τ step is useful because it corresponds to the interaction on one of the p_k's that precedes each call to F in $\mathit{fSys}_{spec}(I_1, \ldots, I_m, r)$.)

Thus, we have reduced the property claimed in this proposition to equation (11), and in turn have reduced this equation to the equivalence of the right-hand sides of equations (17) and (18), for an arbitrary number $r \geq 0$. To prove this equivalence, we invoke Proposition 7, and show that when composed with any closed process R the two right-hand sides of (17) and (18) are barbed bisimilar. Without loss of generality we may assume that none of the names bound in the outermost restrictions occurs free in R. Up to structural equivalence, and therefore barbed equivalence, we may extrude the scope of those restrictions to include R. Since barbed equivalence is preserved by restriction (Proposition 5(4)), it suffices to prove that the following two processes are barbed equivalent:

\[
\begin{align*}
\prod_{i \in \mathit{Ins}} \mathit{A}I'(I_i, K_{AB}) \mid \\
\prod_{x \in \mathit{T}} \mathit{S}I'(N_{S_1}) \mid \prod_{j \in \mathit{Prt}} \mathit{B}I'(j, \tau.F, N_{B_{j1}}) \mid R
\end{align*}
\]
and
\[(\nu p_k k \in Ins) (\Pi k \in Ins A1'(i, j, p_k, K_{ABk}) \text{ where } I_k = (i, j, M)) | \]
\[(\Pi k \in Ins p_k(x), F(j, j, M) \text{ where } I_k = (i, j, M)) | \]
\[\Pi_{s \in 1..r} S1'(N_{ss}) | \Pi_{j \in Prn} [\Pi_{s \in 1..r} B1'(j, F_{spec}, N_{jkt}) | R) \]

for any closed \(R\) such that no \(K_{is}, K_{sj}, K_{ABk}, N_{ss}, N_{jkt},\) or \(p_k\) occurs free in \(R\). (We have removed most of the outermost restrictions only for the sake of notational simplicity. On the other hand, it is necessary to retain the restriction on the \(p_k\)'s: otherwise the simplified process (20) would have input bars \(p_k\) that could not be matched by process (19).)

The remainder of our proof consists in constructing a relation \(S\) such that \(\equiv S\equiv\) relates processes (19) and (20), and establishing that \(S\) is a barbed bisimulation up to \(\sim\) and restriction, hence that processes (19) and (20) are barbed equivalent. We lead up to the definition of \(S\) with several preliminary definitions:

- We let a world be a tuple \(W = (snd, srv, rev, X, E, \sigma, \sigma_{spec}, R)\) where \(E\) is an environment and \(\sigma\) and \(\sigma_{spec}\) are substitutions, \(R\) is a process, \(X \subseteq Ins\), and \(snd\), \(srv\), and \(rev\) are finite maps such that:

\[
\begin{align*}
snd(k) &\in \{a2, sent(L, L') | \text{any closed terms } L \text{ and } L'\} \\
srv(s) &\in \{s1, s2(i), stuck, s4(k), sent(k, L, L') | i \in Prn, k \in Ins, \text{any closed terms } L \text{ and } L'\} \\
rev(j, t) &\in \{b1, b2, stuck, b3(k), run(k), done | k \in Ins\}
\end{align*}
\]

for each \(k \in Ins\), \(s \in 1..r\), and \((j, t) \in Prn \times 1..r\). The symbols \(a2\), \(sent\), \(s1, s2, stuck, s4, b1, b2, stuck, b3, run\), and \(done\) are string tags; \(s2(i)\) is short for the pair \((s2, i)\), \(sent(k, L, L')\) for the pair \((sent, (k, L, L'))\), and similarly for the other tags.

Intuitively, \(k \in X\) just if instance \(k\) may yet complete the protocol. The maps \(snd\), \(srv\), and \(rev\) represent the states of the senders, servers, and receivers, respectively, that participate in the protocol.

- Given a world \(W = (snd, srv, rev, X, E, \sigma, \sigma_{spec}, R)\), and given \(k \in Ins\), \(s \in 1..r\), and \((j, t) \in Prn \times 1..r\), we define processes \(A^W(k), A^W_{spec}(k), S^W(s), B^W(j, t),\) and \(B^W_{spec}(j, t)\):

\[
A^W(k) \triangleq \begin{cases} A2'(I_k, K_{ABk}) & \text{if } snd(k) = a2 \\
0 & \text{otherwise} \end{cases}
\]
\[A^W_{\text{spec}}(k) \triangleq \begin{cases}
A^2((i, j, p_k), K_{ABk}) & \text{if } \text{snd}(k) = a^2, I_k = (i, j, M) \\
0 & \text{otherwise}
\end{cases} \]

\[S^W(s) \triangleq \begin{cases}
S^1(N_{Ss}) & \text{if } \text{srv}(s) = s^1 \\
S^2(i, N_{Ss}) & \text{if } \text{srv}(s) = s^2(i) \\
S^j(i, j, K_{ABk}) & \text{if } \text{srv}(s) = s^j(k), I_k = (i, j, M) \\
0 & \text{otherwise}
\end{cases} \]

\[B^W(j, t) \triangleq \begin{cases}
B^1(j, \tau.F, N_{Bji}) & \text{if } \text{rev}(j, t) = b^1 \\
B^2(j, \tau.F, N_{Bji}) & \text{if } \text{rev}(j, t) = b^2 \\
B^3(i, j, \tau.F, K_{ABk}) & \text{if } \text{rev}(j, t) = b^3(k), I_k = (i, j, M) \\
\tau.F(i, j, M) & \text{if } \text{rev}(j, t) = \text{run}(k), I_k = (i, j, M) \\
0 & \text{otherwise}
\end{cases} \]

\[B^W_{\text{spec}}(j, t) \triangleq \begin{cases}
B^1(j, F_{\text{spec}}, N_{Bji}) & \text{if } \text{rev}(j, t) = b^1 \\
B^2(j, F_{\text{spec}}, N_{Bji}) & \text{if } \text{rev}(j, t) = b^2 \\
B^3(i, j, F_{\text{spec}}, K_{ABk}) & \text{if } \text{rev}(j, t) = b^3(k), I_k = (i, j, M) \\
\overline{\rho k}(\sigma) & \text{if } \text{rev}(j, t) = \text{run}(k), I_k = (i, j, M) \\
0 & \text{otherwise}
\end{cases} \]

Intuitively, \(A^W(k) \) is the process that sender \(k \) has left to run when its state is \(\text{snd}(k) \). Similarly, in the context of the specification, \(A^W_{\text{spec}}(k) \) is the process that sender \(k \) has left to run when its state is \(\text{snd}(k) \); this process does not include \(p_k(x), F(i, j, M) \), which is treated separately. The other definitions deal analogously with replicas of the server and of the receivers.

Given a world \(W = (\text{snd}, \text{srv}, \text{rev}, X, E, \sigma, \sigma_{\text{spec}}, R) \), we also let \(P^W \) be:

\[\Pi_{x \in \text{Ins}} A^W(k) \mid \Pi_{x \in 1..r} S^W(s) \mid \Pi_{(j,t) \in \text{Prn} \times 1..r} B^W(j, t) \mid R\sigma \]

and \(Q^W \) be:

\[(\nu \rho_k(k \in \text{Ins}))(\Pi_{k \in \text{Ins}} A^W_{\text{spec}}(k) \mid \Pi_{x \in 1..r} S^W(s) \mid \Pi_{(j,t) \in \text{Prn} \times 1..r} B^W_{\text{spec}}(j, t) \mid (\Pi_{k \in X} \rho_k(x).F(i, j, M) \text{ where } I_k = (i, j, M)) \mid \overline{R}\sigma_{\text{spec}}) \]

Intuitively, \(P^W \) is the process that the whole system has left to run when its state is as described in \(W \), and \(Q^W \) is the corresponding process for the specification.
• Given a world W with maps $\text{snd}, \text{srv},$ and recv, we define the instance sets of W to be the subsets $X^W_2, X^W_3, X^W_5, X^W_6, X^W_7, X^W_8$ of Ins, such that for any $k \in \text{Ins}$ with $I_k = (i,j,M)$:

$$k \in X^W_2 \iff \text{snd}(k) = a2$$

$$k \in X^W_3 \iff \exists s \in 1..r, t' \in \text{Prn}(\text{snd}(k) = \text{send}(N_{S_k}, N_{S_k}) \& \text{srv}(s) \in \{s1, s2(t')\})$$

$$k \in X^W_5 \iff \exists s \in 1..r(\text{srv}(s) = s_4(k))$$

$$k \in X^W_6 \iff \exists s \in 1..r, t \in 1..r$$

$$(\text{srv}(s) = \text{send}(k, N_{B_{j,t}}, N_{B_{j,t}}) \& \text{recv}(j,t) \in \{b1, b2\})$$

$$k \in X^W_7 \iff \exists t \in 1..r(\text{recv}(j,t) = b3(k))$$

$$k \in X^W_8 \iff \exists t \in 1..r(\text{recv}(j,t) = \text{run}(k))$$

Intuitively, if $k \in X^W_s$ and $s \in \{2,3,5,6,7\}$, then the message in the protocol numbered s is the next to be received in instance k. Instance set X^W_s represents instances that, having completed the protocol, are a step away from running F.

• A world $W = (\text{snd}, \text{srv}, \text{recv}, X, E, \sigma, \sigma_{\text{spec}}, R)$ is possible if and only if the following conditions hold:

1. Sets $X^W_2, X^W_3, X^W_5, X^W_6, X^W_7, X^W_8$ are pairwise disjoint.
2. The union $X^W_2 \cup X^W_3 \cup X^W_5 \cup X^W_6 \cup X^W_7 \cup X^W_8$ is a subset of X.
3. For any $k \in \text{Ins}, s \in 1..r$, and terms L and L', if either $\text{srv}(s) = s_4(k)$ or $\text{srv}(s) = \text{send}(k, L, L')$ then $\text{snd}(k) = \text{send}(N_{S_k}, N_{S_k})$.
4. For any $k \in \text{Ins}, j \in \text{Prn}$, and $t \in 1..r$, if either $\text{recv}(j,t) = b3(k)$ or $\text{recv}(j,t) = \text{run}(k)$ then there exists $s \in 1..r$ such that $\text{srv}(s) = \text{send}(k, N_{B_{j,t}}, N_{B_{j,t}})$.
5. For any $k \in \text{Ins}$, terms L and L', and name p, $\text{snd}(k) = \text{send}(L, L')$ implies either $L = L' = p$ or neither $L = p$ nor $L' = p$.
6. For any $k \in \text{Ins}, s \in 1..r$, terms L and L', and name p, $\text{srv}(s) = \text{send}(k, L, L')$ implies either $L = L' = p$ or neither $L = p$ nor $L' = p$.
7. Environment E is:

$$x_k: \{\neg\}K_{iS} k \in \text{Ins \ with \ } I_k = (i,j,M), \text{snd}(k) = \text{send}(L, L')$$

$$y_k: \{\neg\}K_{AB} k \in \text{Ins \ with \ } I_k = (i,j,M), \text{snd}(k) = \text{send}(L, L')$$

$$z_k: \{\neg\}K_{Sj} s \in 1..r \ with \ I_k = (i,j,M), \text{srv}(s) = \text{send}(k, L, L')$$
(8) Substitution \(\sigma \) is:

\[
\begin{align*}
&\{[[\zeta, \eta, K_{ABk}, L]_{K_{iS}}/x_k k \in \text{Ins} \mid l_k = (i, j, M), \text{snd}(k) = \text{sent}(L, L')], \\
&\{[M]_{K_{ABk}}/y_k k \in \text{Ins} \mid l_k = (i, j, M), \text{snd}(k) = \text{sent}(L, L')], \\
&\{[S, \zeta, \eta, K_{ABk}, L]_{K_{Sj}}/z_k s \in 1..r \mid l_k = (i, j, M), \text{srv}(s) = \text{sent}(k, L, L')\}
\end{align*}
\]

and substitution \(\sigma_{\text{spec}} \) is:

\[
\begin{align*}
&\{[[\zeta, \eta, K_{ABk}, L']_{K_{iS}}/x_k k \in \text{Ins} \mid l_k = (i, j, M), \text{snd}(k) = \text{sent}(L, L')], \\
&\{[p_k]_{K_{ABk}}/y_k k \in \text{Ins} \mid \text{snd}(k) = \text{sent}(L, L')\}, \\
&\{[S, \zeta, \eta, K_{ABk}, L']_{K_{Sj}}/z_k s \in 1..r \mid l_k = (i, j, M), \text{srv}(s) = \text{sent}(k, L, L')\}
\end{align*}
\]

(9) Process \(R \) contains no free occurrence of any of the names \(p_k, K_{iS}, K_{Sj}, K_{ABk} \) and satisfies \(E \vdash R \).

- Finally, we define the relation \(S \) as follows:

\[
S \triangleq \{ (P^W, Q^W) \mid \text{any possible world } W \}
\]

Given a possible world \((\text{snd}, \text{srv}, \text{recv}, X, E, \sigma, \sigma_{\text{spec}}, R)\), conditions (7) and (8) imply that \(E, \sigma, \) and \(\sigma_{\text{spec}} \) are determined by the other components of the world, and that \(E \vdash \sigma \) and \(E \vdash \sigma_{\text{spec}} \) hold. Moreover, \(\sigma \) is injective, as we show next. Let us suppose that \(w \) and \(w' \) are two variables that \(\sigma \) maps to the same term. Since \(\sigma \) maps all variables to ciphertexts under keys in one of three disjoint families, we can distinguish three possible cases:

- \(w \) is \(x_k \) and \(w' \) is \(x_{k'} \) for some \(k, k' \in \text{Ins} \). Since \(\sigma(x_k) \) has the form \(\{[\zeta, \eta, K_{ABk}, L]_{K_{iS}} \mid \text{sigmae contains } K_{ABk} \} \). Similarly, \(\sigma(x_{k'}) \) textually contains \(K_{ABk'} \) in the same position. Therefore \(k = k' \), so \(w = w' \).

- \(w \) is \(y_k \) and \(w' \) is \(y_{k'} \) for some \(k, k' \in \text{Ins} \). Since \(\sigma(y_k) \) has the form \(\{M\}_{K_{ABk}} \). Similarly, \(\sigma(y_{k'}) \) textually contains \(K_{ABk'} \) in the same position. Therefore \(k = k' \), so \(w = w' \).

- \(w \) is \(z_s \) and \(w' \) is \(z_{s'} \) for some \(s, s' \in 1..r \). For some \(k \in \text{Ins} \), we have \(\sigma(z_s) \) = \(\{S, \zeta, \eta, K_{ABk}, L\}_{K_{Sj}} \) where \(\text{srv}(s) = \text{sent}(k, L, L') \) and \(I_k = (i, j, M) \). Since \(\sigma(z_{s'}) = \sigma(z_s) \), there exists \(L'' \) such that \(\text{srv}(s') = \text{sent}(k, L, L'') \). By condition (3), we obtain \(\text{snd}(k) = \text{sent}(N_{Ss}, N_{Ss}) \) and \(\text{snd}(k) = \text{sent}(N_{Ss'}, N_{Ss'}) \). Therefore \(s = s' \), so \(w = w' \).
Thus, if σ maps two variables w and w' to the same term then $w = w'$, so σ is injective. By the same argument, σ_{spec} is injective too.

Now we consider the world $W = (\text{snd}, \text{srv}, \text{rev}, \text{Ins}, \emptyset, \emptyset, \emptyset, R^I)$ where

$$R^I \triangleq R \upharpoonright \prod_{k \in \text{Ins}}(\overline{\text{srv}}(i)) \text{ where } I_k = (i, j, M)$$

such that $\text{snd}(k) = a^2$ for all $k \in \text{Ins}$, $\text{srv}(s) = s1$ for all $s \in 1..r$, and $\text{rev}(j, t) = b1$ for all $(j, t) \in \text{Prn} \times 1..r$. The conditions for W to be possible are satisfied. In particular, X and X^W both equal Ins, while all other instance sets are empty. Furthermore, processes P^W and Q^W are related by \mathcal{S}, and are structurally equivalent to processes (19) and (20) respectively. Therefore, if we can show that $\mathcal{S} \subseteq \sim$ it will follow that processes (19) and (20) are barbed equivalent.

To prove that $\mathcal{S} \subseteq \sim$, we rely on Proposition 6: we show that \mathcal{S} is a barbed bisimulation up to \sim and restriction. Thus, we prove, for any possible world $W = (\text{snd}, \text{srv}, \text{rev}, X, E, \sigma, \sigma_{\text{spec}}, R)$, that: (1) any barb exhibited by P^W is also exhibited by Q^W, and vice versa, and (2) for any reaction $P^W \rightarrow P'$ there is Q' with $Q^W \rightarrow Q'$ and there is a possible world W' and names \tilde{n} such that $P' \sim (\nu \tilde{n}) P^W$, $Q' \sim (\nu \tilde{n}) Q^W$, and vice versa. We treat only conditions (1) and (2); the symmetric conditions can be established by a symmetric treatment.

Condition (1) holds because P^W and Q^W have almost identical structure; the only names to appear in one process but not the other are the p_i's occurring in Q^W; but the outermost restriction on the p_i's prevents their being exhibited as barbs.

To show condition (2), we first recall that P^W is:

$$\Pi_{k \in \text{Ins}} A^W(k) \upharpoonright \Pi_{x \in 1..r} S^W(s) \upharpoonright \Pi_{(j,t) \in \text{Prn} \times 1..r} B^W(j,t) \upharpoonright R\sigma$$

and Q^W is:

$$(\nu p_k^{k \in \text{Ins}})(\Pi_{k \in \text{Ins}} A_{\text{spec}}^W(k) \upharpoonright \Pi_{x \in 1..r} S^W(s) \upharpoonright \Pi_{(j,t) \in \text{Prn} \times 1..r} B_{\text{spec}}^W(j,t) \upharpoonright R\sigma_{\text{spec}})$$

As usual, we appeal to Proposition 3 in order to analyse the reactions of P^W in terms of its possible commitments. Processes $A^W(k)$, $S^W(s)$, $B^W(j,t)$ have only input or τ commitments, whereas the arbitrary process $R\sigma$ may have input, output, or τ commitments. Therefore, a reaction of P^W can arise only in one of the following ways:

67
(A) from the interaction of an output commitment $R \sigma \xrightarrow{\circ} (\nu \bar{n})\langle L_1 \rangle R_1$ and an input commitment of one of the following seven kinds of process:

1. $A^W(k) = A \beta'(I_k, K_{ABk})$
 where $k \in \text{Ins}$ and $\text{snd}(k) = a2$,
2. $S^W(s) = S\ell'(N_{5s})$
 where $s \in 1..r$ and $\text{srv}(s) = s1$,
3. $S^W(s) = S2(i, N_{5s})$
 where $s \in 1..r$ and $\text{srv}(s) = s2(i)$,
4. $S^W(s) = S\ell(i, j, K_{ABk})$
 where $s \in 1..r$, $\text{srv}(s) = s\ell(k)$, and $I_k = (i, j, M)$,
5. $B^W(j, t) = B\ell'(j, \tau. F, N_{Bji})$
 where $(j, t) \in \text{Prn} \times 1..r$ and $\text{recv}(j, t) = b1$,
 where $(j, t) \in \text{Prn} \times 1..r$ and $\text{recv}(j, t) = b2$,
7. $B^W(j, t) = B3(i, j, \tau. F, K_{ABk})$
 where $(j, t) \in \text{Prn} \times 1..r$, $\text{recv}(j, t) = b3(k)$, and $I_k = (i, j, M)$,

(B) from a τ commitment $B^W(j, t) = \tau. F(\bar{i}, \bar{j}, M) \xrightarrow{\tau} F(\bar{i}, \bar{j}, M)$
where $\text{recv}(j, t) = \text{run}(k)$ and $I_k = (i, j, M)$,

(C) from a τ commitment $R \sigma \xrightarrow{\tau} R_1$.

In case (A), we may assume that the bound names \bar{n} are fresh. Since W is possible, it follows that $E \vdash \sigma$ and $E \vdash \sigma_{spec}$, and that both σ and σ_{spec} are injective substitutions. Therefore, given the commitment $R \sigma \xrightarrow{\circ} (\nu \bar{n})\langle L_1 \rangle R_1$, Lemma 9(2) guarantees that there is an agent A such that $E \vdash A$, $f_v(A) \subseteq f_v(R)$, $f_n(A) \subseteq f_n(R)$, and $(\nu \bar{n})\langle L_1 \rangle R_1 = A \sigma$, and moreover that $R \sigma_{spec} \xrightarrow{\circ} A \sigma_{spec}$. From $(\nu \bar{n})\langle L_1 \rangle R_1 = A \sigma$ it follows there are L_2 and R_2 such that $A = (\nu \bar{n})\langle L_2 \rangle R_2$, $L_1 = L_2 \sigma$, and $R_1 = R_2 \sigma$.

We now examine the input commitments of the seven kinds of process above (ordered according to the enumeration of messages in the informal description of the protocol) and exhibit in each case a possible world W' such that $P^W \sim (\nu \bar{n})P^W$ and there is Q' with $Q^W \rightarrow Q'$ and $Q' \sim (\nu \bar{n})Q^W$, where \bar{n} are the names generated in the commitment of R.

68
(1) The reaction $P^W \rightarrow P'$, where

$$P' \equiv (\nu \bar{n})(\prod_{k \in \text{Ins}} A^W(k) \mid \prod_{i' \in E - \{s\}} S^W(s') \mid \prod_{i \in \text{Prn}} [L_2 \sigma \text{ is } f (\overline{i};N_{s_i}) \mid S2(i,N_{s_i})] \mid \prod_{i,j,t \in P \times 1..r} B^W(j,t) \mid R_2 \sigma)$$

arises when α is $\overline{\alpha}$, and there is an input commitment

$$S1'(N_{s_i}) \overset{\bar{s}}{\rightarrow} (x) \prod_{i \in \text{Prn}} [x \text{ is } i] \overline{\alpha}(N_{s_i}) \mid S2(i,N_{s_i})$$

for some $s \in 1..r$ such that $\text{srv}(s) = s1$.

We argue by cases on whether there is $i \in \text{Prn}$ such that $L_2 \sigma = \overrightarrow{i}$.

When there is $i \in \text{Prn}$ such that $L_2 \sigma = \overrightarrow{i}$, we can simplify P' as follows:

$$P' \equiv (\nu \bar{n})(\prod_{k \in \text{Ins}} A^W(k) \mid \prod_{i' \in E - \{s\}} S^W(s') \mid S2(i,N_{s_i}) \mid \prod_{i,j,t \in P \times 1..r} B^W(j,t) \mid \overline{\alpha}(N_{s_i}) \mid R_2 \sigma)$$

We set:

$$W' = (\text{snd}, \text{srv}', \text{rcv}, X, E, \sigma, \sigma_{\text{spec}}, \overline{\alpha}(N_{s_i}) \mid R_2)$$

where srv' is identical to srv except that $\text{srv}'(s) = s2(i)$. With this definition, $P' \equiv (\nu \bar{n})P^{W'}$. Given the form of σ, $L_2 \sigma = \overrightarrow{i}$ implies that $L_2 = \overrightarrow{i}$, and therefore also that $L_2 \sigma_{\text{spec}} = \overrightarrow{i}$. Therefore, $Q^W \rightarrow (\nu \bar{n})Q^{W'}$.

We let $Q' = (\nu \bar{n})Q^{W'}$.

It remains to prove that the world W' is possible. Conditions (1) and (2), which are about the instance sets of W', must hold since the instance sets of W' equal those of W, which itself is possible. Conditions (3) and (6) concern servers in states $s \perp$ and $\text{sent}(k,L,L')$; they hold for W and continue to hold for W' as no servers have entered those states. Conditions (4) and (5) continue to hold in W' as no senders or receivers have changed state. Conditions (7) and (8) concerning E, σ, and σ_{spec} hold, since W is possible, no senders have entered or left a $\text{sent}(L,L')$ state, and no servers have entered or left a $\text{sent}(k,L,L')$ state. Finally, condition (9) is that $\overline{\alpha}(N_{s_i}) \mid R_2$ contains no free occurrence of any of the names p_k, $K_{i,s}$, $K_{s,j}$, K_{ABk} and that $E \vdash \overline{\alpha}(N_{s_i}) \mid R_2$. It holds since the same condition holds for R, and we know that $\text{fn}((\nu \bar{n})\langle L_2 \rangle R_2) \subseteq \text{fn}(R)$, that the names \bar{n} are fresh, and that $E \vdash (\nu \bar{n})\langle L_2 \rangle R_2$. Therefore, W' is a possible world.
Otherwise, when there is no $i \in Prn$ such that $L_2 \sigma = \underline{\alpha}$, we can simplify P' as follows:

$$P' \sim (\nu \eta)((\nu k \in Ins) A^W(k) | \prod_{s \in 1..r-\{s\}} S^W(s') | \Pi_{(j,t) \in Prn \times 1.r} B^W(j,t) | R_2 \sigma)$$

We set:

$$W' = (snd, srv', rev, X, E, \sigma, \sigma_{spec}, R_2)$$

where srv' is identical to srv except that $srv'(s) = stuck$. With this definition, $P' \sim (\nu \eta) P^{W'}$. Given the form of σ and σ_{spec}, $L_2 \sigma \neq \underline{\alpha}$ for every $i \in Prn$. Letting

$$Q' \triangleq (\nu \eta)(\nu p_k \in Ins)((\nu k \in Ins) A^W_{spec}(k) | \prod_{s \in 1..r-\{s\}} S^W_{spec}(s') | \Pi_{i \in Prn} [L_2 \sigma_{spec} is \underline{\alpha} (c^i_s(V^i_s) | S2(i, V^i_s)) | \Pi_{(j,t) \in Prn \times 1.r} B^{W}_{spec}(j,t) | (\Pi_{k \in X} p_k(x).F(i,j,M) where I_k = (i,j,M) | R_2 \sigma_{spec})$$

we obtain $Q^{W'} \rightarrow Q' \sim (\nu \eta) Q^{W'}$.

In this case, it remains to show that the world W' is possible. Conditions (1) and (2) concern the instance sets of W'. We have:

$$X_3^{W'} = \{k \in X_3^W | snd(k) \neq sent(N_{S_3}, N_{S_3})\}$$

from which it follows that $X_3^{W'} \subseteq X_3^W$. All the other instance sets of W' equal those of W. Since conditions (1) and (2) hold for W, they hold also for W'. The rest of the proof that the world W' is possible is as in the case where there is $i \in Prn$ such that $L_2 \sigma = \underline{\alpha}$.

(2) The reaction $P^{W'} \rightarrow P'$, where

$$P' \equiv (\nu \eta)(\prod_{s \in 1..r-\{s\}} A^W(k') | \prod_{s \in 1..r-\{s\}} S^W(s') | \Pi_{(j,t) \in Prn \times 1.r} B^W(j,t) | R_2 \sigma)$$

arises when α is c^i_s, and there is an input commitment

$$A^2(I_k, K_{ABk}) \xrightarrow{\epsilon_i} (x) (c^s_s(i, \underline{\alpha}, j, K_{ABk}, x, K_{i,s})) | c^j_j(i, M, K_{ABk})$$

70
for some \(k \in \text{Ins} \) such that \(\text{snd}(k) = a2 \) and \(I_k = (i, j, M) \). We set:

\[
W' = (\text{snd}', \text{sr}', \text{rc}', X, E', \sigma', \sigma'_{\text{spec}}, R_2 | e_3(x_k) | e_2((i, y_k)))
\]

where \(\text{snd}' \) is identical to \(\text{snd} \) except that \(\text{snd}'(k) = \text{sent}(L_2\sigma, L_2\sigma_{\text{spec}}) \), and

\[
E' \triangleq E, x_k: \{ - \}_K, y_k: \{ - \}_K
\]

\[
\sigma' \triangleq \sigma, \{ i, j, k, L_2\sigma \}_{K_{is}} / x_k, \{ M \}_{K_{ABk}} / y_k
\]

\[
\sigma'_{\text{spec}} \triangleq \sigma_{\text{spec}}, \{ i, j, k, L_2\sigma_{\text{spec}} \}_{K_{is}} / x_k, \{ M \}_{K_{ABk}} / y_k
\]

With this definition, \(P' \equiv (\nu \alpha)P^{W'} \); moreover, \(Q^W \rightarrow (\nu \alpha)Q^{W'} \).

It remains to show that the world \(W' \) is possible. First, we consider the instance sets of \(W' \). They are equal to those of \(W \), except for:

\[
X_2^{W'} = X_2^W - \{ k \} \quad \text{while } k \in X_2^W
\]

\[
X_3^{W'} = \begin{cases} X_3^W \cup \{ k \} & \text{if } \exists s \in 1..r, i' \in \text{Prn} \\ (L_2\sigma = L_2\sigma_{\text{spec}} = N_{S_s} & \text{or} \\ \text{sv}(s) \in \{ s1, s2(i') \}) \\ X_3^W & \text{otherwise} \end{cases}
\]

Therefore, since conditions (1) and (2) hold for \(W \), they hold also for \(W' \). Condition (5) holds for \(W' \) because there are no names in the range of \(\sigma \) or \(\sigma_{\text{spec}} \), so for any name \(n \) either \(L_2\sigma = L_2\sigma_{\text{spec}} = n \) or neither \(L_2\sigma = n \) nor \(L_2\sigma_{\text{spec}} = n \). Conditions (3), (4), (6), (7), (8), and (9) hold for \(W \), and it follows easily that they continue to hold for \(W' \).

(3) The reaction \(P^W \rightarrow P' \), where

\[
P' \equiv (\nu \alpha)(\prod_{k \in \text{Ins}} A^W(k) | \prod_{i' \in 1..r - \{ z \}} S^W(i') | \prod_{(j, t) \in \text{Prn} x 1..r} B^W(j, t) | R_2\sigma | \text{let } (y_1, y_2) = L_2\sigma \text{ in } \sum_{y \in \bar{x}_2} \text{case } y_2 \text{ of } \{ z_1, z_2, z_3, z_4, z_5 \} \text{ in } \prod_{j \in \text{Prn}} \sum_{z_{ij} \in \bar{x}_2} \text{case } z_{ij} \text{ of } \{ z_{1j}, z_{2j}, z_{3j}, z_{4j}, z_{5j} \} \text{ in } \sum_{z \in \bar{x}_2} \text{sum } \{ z_1, z_2, z_3, z_4, z_5 \text{ is } N_{S_s} \} | S_4(i, j, z_4))
\]

arises when \(\alpha \) is \(e_2 \), and there is an input commitment

\[
S_2(i, N_{S_s}) \xrightarrow{e_2} (x) \text{let } (y_1, y_2) = x \text{ in } \sum_{y_1 \in \bar{x}_2} \text{case } y_2 \text{ of } \{ z_1, z_2, z_3, z_4, z_5 \} \text{ in } \prod_{j \in \text{Prn}} \sum_{z_{ij} \in \bar{x}_2} \text{case } z_{ij} \text{ of } \{ z_{1j}, z_{2j}, z_{3j}, z_{4j}, z_{5j} \} \text{ in } \sum_{z \in \bar{x}_2} \text{sum } \{ z_1, z_2, z_3, z_4, z_5 \text{ is } N_{S_s} \} | S_4(i, j, z_4))
\]
for some $s \in 1..r$ with $\text{srv}(s) = s2(i)$.

We argue by cases on whether $L_2\sigma$ is a pair with first component i and second component a ciphertext under K_{s_1} containing N_{s_1} as last field. By condition (8), $L_2\sigma$ has i as first component if and only if L_2 has i as first component. Similarly, if $f_n(L_2) \subseteq f_n(R) \cup \{\vec{n}\}$, the second component of $L_2\sigma$ is a ciphertext under K_{s_3} containing N_{s_3} if and only if the second component of L_2 is a variable x_k for some $k \in \text{Ins}$ such that $\text{snd}(k) = \text{sent}(N_{s_3}, L')$ for some L'. In this case, the second component of $L_2\sigma$ is $\{i, j, K_{ABk}, N_{s_3}\}_{K_{s_1}}$ where $I_k = (i, j, M)$. Thus, $L_2\sigma$ determines k uniquely because of the presence of K_{ABk}. By condition (5), $L' = N_{s_3}$, and $\text{snd}(k) = \text{sent}(N_{s_3}, N_{s_3})$, so if L_2 has the form (i, x_k), then $L_2\sigma$ and $L_2\sigma_{\text{spec}}$ both equal $(i, j, K_{ABk}, N_{s_3})_{K_{s_1}}$. Conversely, the form of $L_2\sigma_{\text{spec}}$ determines the form of $L_2\sigma$.

Assuming that $L_2\sigma$ is a pair of the form described, we can simplify P' as follows:

$$
P' \equiv (\nu \vec{n})(\prod_{k \in \text{Ins}} A^W(k) \mid \prod_{s' \in 1..r \setminus \{s\}} S^W(s') \mid \prod_{(j,t) \in \text{Prn} \times 1..r} B^W(j, t) \mid S_4(i, j, K_{ABk}) \mid R_2\sigma \mid \overline{\sigma}(\vec{n}))$$

where i, j, and k are defined as explained above. We set:

$$W' = (\text{snd}, \text{srv}', \text{rcv}, X, E, \sigma, \sigma_{\text{spec}}, R_2 \mid \overline{\sigma}(\vec{n}))$$

where srv' is identical to srv except that $\text{srv}'(s) = s_4(k)$. With this definition, $P' \equiv (\nu \vec{n}) P^W$ and $Q^W \rightarrow (\nu \vec{n}) Q^{W'}$.

It remains to show that the world W' is possible. All the instance sets of W' equal those of W, except for:

$$X_3^{W'} = X_3^W \setminus \{k' \in X_3^W \mid \text{snd}(k') = \text{sent}(N_{s_3}, N_{s_3})\}$$

while $k \in X_3^W$

$$X_5^{W'} = X_5^W \cup \{k\}$$

In particular, $k \notin X_3^{W'}$. Therefore, conditions (1) and (2) hold for W'. Conditions (3), (4), (5), (6), (7), (8), and (9) hold for W, and it follows easily that they continue to hold for W'. For condition (3), we use the fact that $\text{snd}(k) = \text{sent}(N_{s_3}, N_{s_3})$.

72
On the other hand, if $L_2\sigma$ is not of the form described, we can simplify P' as follows:

$$P' \sim (\nu \bar{m})(\prod_{k \in \text{Ins}} A^W(k) | \prod_{s' \in \{1, \ldots, r\} - \{s\}} S^W(s') | \prod_{(j,t) \in Prn \times 1..r} B^W(j,t) | R_2\sigma)$$

We set:

$$W' = (snd, srv', rev, X, E, \sigma, \sigma_{\text{spec}}, R_2)$$

where srv' is identical to srv except that $srv'(s) = \text{stuck}$. With this definition, $P' \sim (\nu \bar{m})P''$. Letting

$$Q' \triangleq (\nu \bar{m})(\nu \rho^k_{k \in \text{Ins}})(\prod_{k \in \text{Ins}} A^W_{\text{spec}}(k) | \prod_{s' \in \{1, \ldots, r\} - \{s\}} S^W(s') | \prod_{(j,t) \in Prn \times 1..r} B^W_{\text{spec}}(j,t) | \prod_{k \in X} p_k(x), F(\chi, \tau, \mu) \text{ where } I_k = (i, j, M)) | R_2\sigma_{\text{spec}})$$

where the omitted code gets stuck, we obtain $Q^W \rightarrow Q' \sim (\nu \bar{m})Q'^W$. In this case, it is easy to check that the world W' is possible. All the instance sets of W' equal those of W, except for:

$$X^W_3' = \{k \in X^W_3 | \text{snd}(k) \neq \text{sent}(N_{S_1}, N_{S_2})\}$$

so $X^W_3' \subseteq X^W_3$.

(4) The reaction $P^W \rightarrow P'$, where

$$P' \equiv (\nu \bar{m})(\prod_{k \in \text{Ins}} A^W(k) | \prod_{s \in \{1, \ldots, r\}} S^W(s) | \prod_{(j,t) \in Prn \times 1..r - \{s\}} B^W(j,t) | B_2(j, \tau, F, N_{B_{ji}}) | R_2\sigma)$$

arises when α is $\overline{\beta}$, and there is an input commitment

$$B_1'(j, \tau, F, N_{B_{ji}}) \overset{\xi_j}{\rightarrow} (x)(\overline{\epsilon_{S}}(N_{B_{ji}}) | B_2(j, \tau, F, N_{B_{ji}}))$$

for some $(j, t) \in Prn \times 1..r$ such that $rev(j, t) = b1$. We set:

$$W' = (snd, srv, rev', X, E, \sigma, \sigma_{\text{spec}}, R_2 | \overline{\epsilon_{S}}(N_{B_{ji}}))$$

where rev' is identical to rev except that $rev'(j, t) = b2$. With this definition, $P' \equiv (\nu \bar{m})P'^W$ and $Q^W \rightarrow (\nu \bar{m})Q'^W$. Given that W is a possible world, so is W'; in particular, the instance sets of W' equal those of W.

73
(5) The reaction $P^W \rightarrow P'$, where

$$P' \equiv (\nu\bar{n})(\prod_{k \in In_k} A^W(k) \mid \prod_{s' \in 1..r-s(s)} S^{W'}(s') \mid ∏_{(j,t) \in P_{Prn \times 1..r}} B^W(j,t) \mid \overline{\sigma'_j}\{S,\hat{j},\hat{j},K_{ABk},L_2\sigma\}_{k_s}) \mid \overline{R_2\sigma})$$

arises when α is $\overline{s_3}$, and there is an input commitment

$$S^j_4(i,j,K_{ABk}) \xrightarrow{e} (x)\overline{\sigma'_j}\{S,\hat{j},\hat{j},K_{ABk},x\}_{k_s}$$

for some $s \in 1..r$ such that $srv(s) = s^j_4(k)$ and $I_k = (i,j,M)$.

We set:

$$W' = (snd, srv', rcv, X, E', \sigma', \sigma'_\text{spec}, R_2 \mid \overline{\sigma'_j}(z_s))$$

where srv' is identical to srv except that $srv'(s) = sent(k, L_2\sigma, L_2\sigma_{\text{spec}})$, and

$$E' \triangleq E, z_s;\{-\}_{k_s}$$
$$\sigma' \triangleq \sigma, \{S,\hat{j},\hat{j},K_{ABk},L_2\sigma\}_{k_s}/z_s$$
$$\sigma'_{\text{spec}} \triangleq \sigma_{\text{spec}}, \{S,\hat{j},\hat{j},K_{ABk},L_2\sigma_{\text{spec}}\}_{k_s}/z_s$$

With this definition, $P' \equiv (\nu\bar{n})P^W$ and $Q^W \rightarrow (\nu\bar{n})Q^{W'}$.

It remains to show that the world W' is possible. First, we note that if $srv(s') = s^j_4(k)$ then $s = s'$, because $srv(s) = s^j_4(k)$ and by condition (3). Therefore, all the instance sets of W' equal those of W, except for:

$$X^W_5' = X^W_5 - \{k\}$$

$$X^W_6' = \begin{cases} X^W_6 \cup \{k\} \text{ sometimes—when is unimportant} \\ X^W_6 \text{ otherwise} \end{cases}$$

So conditions (1) and (2) hold for W'. Since W satisfies conditions (4) and (5), so does W', trivially. Condition (3) for W implies that $snd(k) = sent(N_{Ss},N_{Ss})$; it follows that condition (3) holds for W'. Condition (6) holds for W' because there can be no names in the ranges of σ and σ_{spec}, so, for any name n, either $L_2\sigma = L_2\sigma_{\text{spec}} = n$ or neither $L_2\sigma = n$ nor $L_2\sigma_{\text{spec}} = n$. Conditions (7), (8), and (9) for W' are easy consequences of the corresponding conditions for W.

74
(6) The reaction $P^W \rightarrow P'$, where

$$P' \equiv (\nu \bar{n})(\Pi_{k \in I_{ns}} A^W(k) | \Pi_{s \in 1..r} S^W(s) | \Pi_{(j',t') \in P_{rn} \times 1..r - \{(j,t)\}} B^W(j',t') | R_2 \sigma | \text{case } L_2 \sigma \text{ of } \{y_1, y_2, y_3, y_4, y_5\} \text{ in } \Pi_{i \in P_{rn}}[y_i \text{ is } S] [y_2 \text{ is } \bar{A}] [y_3 \text{ is } B] [y_5 \text{ is } N_{B_{j't'}}]$$

arises when α is $\bar{\alpha}$, and there is an input commitment

$$B_2(j, \tau.F, N_{B_{j't'}}) \xrightarrow{j} (x) \text{ case } x \text{ of } \{y_1, y_2, y_3, y_4, y_5\} \text{ in } \Pi_{i \in P_{rn}}[y_i \text{ is } S] [y_2 \text{ is } \bar{A}] [y_3 \text{ is } B] [y_5 \text{ is } N_{B_{j't'}}]$$

$$B_3(i, j, \tau.F, y_4)$$

for some $(j, t) \in P_{rn} \times 1..r$ with $\text{rcv}(j, t) = b_2$.

We argue by cases on whether $L_2 \sigma$ is a ciphertext under $K_{S_{j'}}$ containing $N_{B_{j't'}}$ as last field. By condition (8), since $fn(L_2) \subseteq fn(R) \cup \{\bar{n}\}$, $L_2 \sigma$ is a ciphertext under $K_{S_{j'}}$ containing $N_{B_{j't'}}$ if and only if L_2 is a variable z_s for some $s \in 1..r$ such that $\text{srv}(s) = \text{sent}(k, N_{B_{j't'}}, l')$ for some k and l'. In this case, $L_2 \sigma$ is $\{S_i \bar{j}, j, k_{ABk}, N_{B_{j't'}}\}$ $K_{S_{j'}}$ where $I_k = (i, j, M)$. Thus, $L_2 \sigma$ determines k uniquely because of the presence of K_{ABk}. By condition (6), $l' = N_{B_{j't'}}$ and $\text{srv}(s) = \text{sent}(k, N_{B_{j't'}}, N_{B_{j't'}})$, so if L_2 is z_s then $L_2 \sigma$ and $L_2 \sigma_{\text{spec}}$ both equal $\{S_i \bar{j}, j, k_{ABk}, N_{B_{j't'}}\} K_{S_{j'}}$. Conversely, the form of $L_2 \sigma_{\text{spec}}$ determines the form of $L_2 \sigma$.

Assuming that $L_2 \sigma$ is of the form described, we can simplify P' as follows:

$$P' \equiv (\nu \bar{n})(\Pi_{k \in I_{ns}} A^W(k) | \Pi_{s \in 1..r} S^W(s) | \Pi_{(j',t') \in P_{rn} \times 1..r - \{(j,t)\}} B^W(j',t') | B_3(i, j, \tau.F, K_{ABk}) | R_2 \sigma)$$

We set:

$$W' = (\text{snd}, \text{srv}, \text{rcv}', X, E, \sigma_{\text{spec}}, R_2)$$

where rcv' is identical to rcv except that $\text{rcv}'(j, t) = b_3(k)$. With this definition, $P' \equiv (\nu \bar{n})P_{W'}$ and $Q^W \rightarrow (\nu \bar{n})Q^{W'}$.

It remains to check that the world W' is possible. All the instance sets of W' equal those of W, except for:

$$X'_{6_{W'}} = X_{6_{W}} - \{k' \text{ where } I_{k'} = (j', j, M') | \exists s' \in 1..r (\text{srv}(s') = \text{sent}(k', N_{B_{j't'}}, N_{B_{j't'}}))\}$$
The reaction \(W \) holds for

\[
X^W_7 = X^W_7 \cup \{k\}
\]

In particular, \(k \not\in X^W_6 \). Therefore, conditions (1) and (2) hold for \(W' \). Conditions (3), (5), (6), (7), (8), and (9) hold for \(W \), and it follows easily that they continue to hold for \(W' \). Condition (4) holds for \(W' \) because \(\text{srv}(s) = \text{sent}(k, N_{Bji}, N_{Bji}) \).

On the other hand, if \(L_2 \sigma \) is not of the form described, we can simplify \(P' \) as follows:

\[
P' \sim (\nu \overline{m})(\prod_{k \in \text{Ins}} A^W(k) \mid \prod_{s \in 1..r} S^W(s) \mid \prod_{(j', t') \in \text{Prn} \times 1..r - \{i, j\}} B^W(j', t') \mid R_2 \sigma)
\]

We set:

\[
W' = (\text{snd}, \text{srv}, \text{rcv}', X, E, \sigma, \sigma_{\text{spec}}, R_2)
\]

where \(\text{rcv}' \) is identical to \(\text{rcv} \) except that \(\text{rcv}'(j, t) = \text{stuck} \). With this definition, \(P' \sim (\nu \overline{m})P'^W \). Letting

\[
Q' \triangleq (\nu \overline{m})(\nu p_k \prod_{k \in \text{Ins}} A^W_{\text{spec}}(k) \mid \prod_{s \in 1..r} S^W(s) \mid \prod_{(j', t') \in \text{Prn} \times 1..r - \{i, j\}} B^W_{\text{spec}}(j', t') \mid \text{case } L_2 \sigma \text{ of } \{y_1, y_2, y_3, y_4, y_5\}_{K_{\overline{m}}} \text{ in } \ldots \mid (\prod_{k \in X} p_k(x).F(l, j, M) \text{ where } I_k = (i, j, M) \mid R_2 \sigma_{\text{spec}})
\]

where the omitted code gets stuck, we obtain \(Q^W \to Q' \sim (\nu \overline{m})Q'^W \).

In this case, it is easy to check that the world \(W' \) is possible. All the instance sets of \(W' \) equal those of \(W \), except for:

\[
X'^W_6 = X^W_6 - \{k \text{ where } I_k = (i, j, M) \mid \exists s \in 1..r(\text{srv}(s) = \text{sent}(k, N_{Bji}, N_{Bji}) \})
\]

so \(X'^W_6 \subseteq X^W_6 \).

(7) The reaction \(P^W \to P' \), where

\[
P' \equiv (\nu \overline{m})(\prod_{k \in \text{Ins}} A^W(k) \mid \prod_{s \in 1..r} S^W(s) \mid \prod_{(j', t') \in \text{Prn} \times 1..r - \{i, j\}} B^W(j', t') \mid R_2 \sigma \mid \text{let } (y_1, y_2) = L_2 \sigma \text{ in } [y_1 \text{ is } \overline{l}] \text{ case } y_2 \text{ of } \{z\}_{K_{ABk}} \text{ in } \tau.F(l, j, z))
\]

76
arises when α is $\bar{\gamma}_j$, and there is an input commitment

$$B3(i, j, \tau.F, K_{ABk}) \xrightarrow{\gamma} (x) \text{let } (y_1, y_2) = x \text{ in } [y_1 \text{ is } \bar{\gamma}_i] \text{ case } y_2 \text{ of } \{z\}_{K_{ABk}} \text{ in } \tau.F(\bar{\gamma}_j, z)$$

for some $k \in Ins$ and $(j, t) \in Prn \times 1..r$ such that $\text{recv}(j, t) = b3(k)$ and $I_k = (i, j, M)$ for some M.

We argue by cases on whether $L_2\sigma$ is a pair with first component $\bar{\gamma}_i$ and second component a ciphertext under K_{ABk}. By condition (8), $L_2\sigma$ has $\bar{\gamma}_i$ as first component if and only if L_2 has $\bar{\gamma}_i$ as first component. Similarly, since $\text{fn}(L_2) \subseteq \text{fn}(R) \cup \{\bar{\gamma}_i\}$, the second component of $L_2\sigma$ is a ciphertext under K_{ABk} if and only if the second component of L_2 is y_k and $\text{snd}(k) = \text{sent}(L, L')$ for some L and L'. In this case, the second component of $L_2\sigma$ is $\{M\}_{K_{ABk}}$. Thus, if L_2 has the form $(\bar{\gamma}_i y_k)$, then $L_2\sigma$ equals $(\bar{\gamma}_i \{M\}_{K_{ABk}})$, while $L_2\sigma_{spec}$ equals $(\bar{\gamma}_i \{p_k\}_{K_{ABk}})$. Conversely, the form of $L_2\sigma_{spec}$ determines the form of $L_2\sigma$.

Assuming that $L_2\sigma$ is a pair of the form described, we can simplify P' as follows:

$$P' \equiv (\nu \bar{\gamma})(\prod_{k \in Ins} A^W(k) \mid \prod_{s \in 1..r} S^W(s) \mid \prod_{(j', t') \in Prn \times 1..r \setminus \{(j, t)\}} B^W(j', t') \mid R_2\sigma \mid \tau.F(\bar{\gamma}_j, M))$$

We set:

$$W' = (\text{snd}, \text{srv}, \text{recv}', X, E, \sigma, \sigma_{spec}, R_2)$$

where recv' is identical to recv except that $\text{recv}'(j, t) = \text{run}(k)$. With this definition, $P' \equiv (\nu \bar{\gamma})P'^W$ and $Q^W \rightarrow (\nu \bar{\gamma})Q^W$.

In order to check that the world W' is possible, we first consider the instance sets of W'. First, we argue that $k \notin X_7^{W'}$. It suffices to show that if $\text{recv}(j, t') = b3(k)$ then in fact $t = t'$. Condition (4) for W says that there exists $s \in 1..r$ such that $\text{srv}(s) = \text{sent}(k, N_{Bji}, N_{Bji})$, and that if $\text{recv}(j, t') = b3(k)$ then there exists $s' \in 1..r$ such that $\text{srv}(s') = \text{sent}(k, N_{Bji'}, N_{Bji'})$. Condition (3) for W says that $\text{snd}(k) = \text{sent}(N_{S\bar{\gamma}}, N_{S\bar{\gamma}})$ and $\text{snd}(k) = \text{sent}(N_{S\bar{\gamma}}, N_{S\bar{\gamma}})$. Therefore, $s = s'$ and then $t = t'$. We conclude that $k \notin X_7^{W'}$. We obtain that the instance sets of W' equal those of W except for:

$$X_7^{W'} = X_7^W \setminus \{k\} \text{ while } k \in X_7^W$$

$$X_8^{W'} = X_8^W \cup \{k\}$$
So conditions (1) and (2) hold for \(W' \). Conditions (3), (4), (5), (6), (7), (8), and (9) hold for \(W \), and it follows easily that they continue to hold for \(W' \).

On the other hand, if \(L_2 \sigma \) is not of the form described, we can simplify \(P' \) as follows:

\[
P' \sim (\nu \bar{n})(\Pi_{k \in \text{Ins}} A^W(k) \mid \Pi_{s \in 1..r} S^W(s) \mid \Pi_{(j',t') \in Prn \times 1..r - \{(j,t)\}} B^W(j',t') \mid R_2 \sigma)
\]

We set:

\[
W' = (\text{snd}, \text{srv}, \text{rev}', X, E, \sigma, \sigma_{\text{spec}}, R_2)
\]

where \(\text{rev}' \) is identical to \(\text{rev} \) except that \(\text{rev}'(j,t) = \text{stuck} \). With this definition, \(P' \sim (\nu \bar{n})P^{W'} \). Letting

\[
Q' \triangleq (\nu \bar{n})(\nu p_k \kappa \in \text{Ins}) (\Pi_{k \in \text{Ins}} A^{W_{\text{spec}}}(k) \mid \Pi_{s \in 1..r} S^W(s) \mid \Pi_{(j',t') \in Prn \times 1..r - \{(j,t)\}} B^{W_{\text{spec}}}(j',t') \mid \text{let } (y_1, y_2) = L_2 \sigma \text{ in } \ldots \mid (\Pi_{k \in X} p_k(x), F(\bar{z}, j, M) \text{ where } I_k = (i, j, M) \mid R_{2\sigma_{\text{spec}}})
\]

where the omitted code gets stuck, we obtain \(Q^W \rightarrow Q' \sim (\nu \bar{n})Q^{W'} \).

The proof that \(W' \) is possible is almost identical to that just given for the other case; the only change is that \(X'^W = X^W \).

This completes case (A).

In case (B), the reaction \(P^W \rightarrow P' \), where

\[
P' \equiv (\Pi_{k \in \text{Ins}} A^W(k) \mid \Pi_{s \in 1..r} S^W(s) \mid \Pi_{(j',t') \in Prn \times 1..r - \{(j,t)\}} B^W(j',t') \mid F(\bar{z}, j, M) \mid R \sigma)
\]

arises from the \(\tau \) commitment

\[
B^W(j,t) \stackrel{\tau}{\rightarrow} F(\bar{z}_j, j, M)
\]

for some \((j,t) \in Prn \times 1..r\) such that \(\text{rev}(j,t) = \text{run}(k) \) and \(I_k = (i, j, M) \) for some \(k \in \text{Ins} \). Note that \(k \in X \), since \(\text{rev}(j,t) = \text{run}(k) \) implies \(k \in X^W \subseteq X \). We set:

\[
W' = (\text{snd}, \text{srv}, \text{rev}', X', E, \sigma, \sigma_{\text{spec}}, F(\bar{z}, j, M) \mid R)
\]
where \(rev' \) is identical to \(rev \) except that \(rev'(j,t) = done \) and where \(X' = X - \{k\} \). With this definition, \(P' \equiv P^{W'} \). Moreover, we have:

\[
Q^{W} = (vp_{k} k \in Ins) (\prod_{k \in Ins} A^{W}(k) \mid \prod_{s \in 1..r} S^{W}(s) \mid \\
\prod_{(j,t) \in Prn \times 1..r} B^{W}_{spec}(j,t) \mid \\
(\prod_{k \in X} p_{k}(x).F(\xi, j, M) \text{ where } I_{k} = (i, j, M)) \mid R_{\sigma_{spec}})
\]

\[
equiv (vp_{k} k \in Ins) (\prod_{k \in Ins} A^{W}(k) \mid \prod_{s \in 1..r} S^{W}(s) \mid \\
\prod_{(j',t') \in Prn \times 1..r - \{\xi, j\}} B^{W}_{spec}(j', t') \mid \\
(\prod_{s \in X'} p_{k}(x).F(\xi, j, M) \text{ where } I_{k} = (i, j, M)) \mid \\
\overline{p_{k}(\xi)} \mid p_{k}(x).F(\xi, j, M) \mid R_{\sigma_{spec}})
\]

\[
\rightarrow (vp_{k} k \in Ins) (\prod_{k \in Ins} A^{W}(k) \mid \prod_{s \in 1..r} S^{W}(s) \mid \\
\prod_{(j',t') \in Prn \times 1..r - \{\xi, j\}} B^{W}_{spec}(j', t') \mid \\
(\prod_{k \in X'} p_{k}(x).F(\xi, j, M) \text{ where } I_{k} = (i, j, M)) \mid \\
F(\xi, j, M) \mid R_{\sigma_{spec}})
\]

\[
equiv Q^{W'}
\]

In order to check that the world \(W' \) is possible, we first argue that \(k \notin X_{\overline{W}} \). It suffices to show that if \(rev(j,t') = run(k) \) then in fact \(t = t' \). Condition (4) for \(W \) says that there exists \(s \in 1..r \) such that \(srv(s) = sent(k, N_{Bjt}, N_{Bjt}) \), and that if \(rev(j,t') = run(k) \) then there exists \(s' \in 1..r \) such that \(srv(s') = sent(k, N_{Bjt'}, N_{Bjt'}) \). Condition (3) for \(W \) says that \(snd(k) = sent(N_{S}, N_{S}) \) and \(snd(k) = sent(N_{S'}, N_{S'}) \). Therefore, \(s = s' \) and then \(t = t' \). We conclude that \(k \notin X_{\overline{W}} \). We obtain that the instance sets of \(W' \) equal those of \(W \) except for:

\[
X_{\overline{W}} = X_{\overline{W}} - \{k\}
\]

So conditions (1) and (2) hold for \(W' \). Conditions (3), (4), (5), (6), (7), (8), and (9) hold for \(W' \), and it follows easily that they continue to hold for \(W' \). For condition (9), we rely on the fact that \(F(\xi, j, M) \) is a closed process and that it cannot contain free occurrences of any of the names \(p_{k}, K_{S}, K_{S'}, K_{ABjt} \). (The abstraction \(F \) cannot contain free occurrences of those names because of our general convention that bound parameters of the protocol do not occur free in \(F \). The term \(M \) cannot because it is part of the arguments to \(S_{ys} \) and \(S_{ys_{spec}} \).)

Finally, in case (C), the reaction \(P^{W} \rightarrow P' \), where

\[
P' = \prod_{k \in Ins} A^{W}(k) \mid \prod_{s \in 1..r} S^{W}(s) \mid \prod_{(j,t) \in Prn \times 1..r} B^{W}(j,t) \mid R_{1}
\]

79
arises from the \(\tau \) commitment \(R\sigma \xrightarrow{\tau} R_1 \). Lemma 9(2) implies that there is a process \(R_2 \) such that \(E \vdash R_2, \text{fv}(R_2) \subseteq \text{fv}(R), \text{fn}(R_2) \subseteq \text{fn}(R), R_1 = R_2\sigma \), and \(R\sigma_{\text{spec}} \xrightarrow{\tau} R_2\sigma_{\text{spec}} \). We set:

\[
W' = (\text{snd}, \text{srv}, \text{rcv}, X, E, \sigma, \sigma_{\text{spec}}, R_2)
\]

With this definition, \(P' \equiv P^{W'} \) and \(Q \rightarrow Q^{W'} \); moreover, \(W' \) is a possible world.

This concludes the proof of the authenticity property, Proposition 21. \(\square \)

Proposition 21 is rather strong, so we obtain the secrecy property as a corollary:

Proposition 22 If each pair \((I_1, J_1), \ldots, (I_m, J_m) \) is indistinguishable, then

\[
\text{Sys}(I_1, \ldots, I_m) \simeq \text{Sys}(J_1, \ldots, J_m)
\]

Proof When \(I = (i, j, M) \) and \(J = (i, j, M') \), the pair \((I, J) \) is indistinguishable only if \(F(\downarrow i, j, M) \simeq F(\downarrow i, j, M') \). Using the fact that testing equivalence is a congruence (Proposition 1), we obtain:

\[
\begin{align*}
\lambda I_{\text{spec}}(I, F) &= (\nu p)(\lambda I(i, j, p) \mid p(x), F(\downarrow i, j, M)) \\
&\simeq (\nu p)(\lambda I(i, j, p) \mid p(x), F(\downarrow i, j, M')) \\
&= \lambda I_{\text{spec}}(J, F)
\end{align*}
\]

If each pair \((I_1, J_1), \ldots, (I_m, J_m) \) is indistinguishable, then Propositions 1 and 21 permit the following calculation:

\[
\begin{align*}
\text{Sys}(I_1, \ldots, I_m) &\simeq \text{Sys}_{\text{spec}}(I_1, \ldots, I_m) \\
&= (\nu K_{iS} \in \mathcal{P}_{\text{prn}})(\nu K_{S_j} \in \mathcal{P}_{\text{prn}}) \\
&\quad (\prod_{k \in \mathbb{N}_2} \lambda I_{\text{spec}}(I_k, F) \mid !S_1 \mid \prod_{j \in \mathcal{P}_{\text{prn}}} !B_1(j, F_{\text{spec}})) \\
&\simeq (\nu K_{iS} \in \mathcal{P}_{\text{prn}})(\nu K_{S_j} \in \mathcal{P}_{\text{prn}}) \\
&\quad (\prod_{k \in \mathbb{N}_2} \lambda I_{\text{spec}}(J_k, F) \mid !S_1 \mid \prod_{j \in \mathcal{P}_{\text{prn}}} !B_1(j, F_{\text{spec}})) \\
&= \text{Sys}_{\text{spec}}(J_1, \ldots, J_m) \\
&\simeq \text{Sys}(J_1, \ldots, J_m)
\end{align*}
\]

This completes the proof of the secrecy property. \(\square \)
7 Further Cryptographic Primitives

Although so far we have discussed only shared-key cryptography, other kinds of cryptography are also easy to treat within the spi calculus. In this section we show how to handle cryptographic hashing, public-key encryption, and digital signatures. We add syntax for these operations to the spi calculus and give their semantics. We thus provide evidence that our ideas are applicable to a wide range of security protocols, beyond those that rely on shared-key encryption. We believe that we may be able to deal similarly with Diffie-Hellman techniques and with secret sharing. However, protocols for oblivious transfer and for zero-knowledge proofs, for example, are probably beyond the scope of our approach.

7.1 Hashing

A cryptographic hash function has the properties that it is very expensive to recover an input from its image or to find two inputs with the same image. Functions such as SHA and RIPE-MD are generally believed to have these properties [Sch94].

When we represent hash functions in the spi calculus, we pretend that operations that are very expensive are altogether impossible. We simply add a construct to the syntax of terms of the spi calculus:

\[
L, M, N ::= \text{terms} \\
\ldots \text{as in Section 3.1} \\
H(M) \quad \text{hashing}
\]

The syntax of processes is unchanged. Intuitively, \(H(M)\) represents the hash of \(M\). The absence of a construct for recovering \(M\) from \(H(M)\) corresponds to the assumption that \(H\) cannot be inverted. The lack of any equations \(H(M) = H(M')\) corresponds to the assumption that \(H\) is free of collisions.

7.2 Public-Key Encryption and Digital Signatures

Traditional public-key encryption systems are based on key pairs. Normally, one of the keys in each pair is private to one principal, while the other key is public. Any principal can encrypt a message using the public key; only a principal that has the private key can then decrypt the message.
We assume that neither key can be recovered from the other. We could just as easily deal with the case where the public key can be derived from the private one. Much as in Section 3.1, we also assume that the only way to decrypt an encrypted packet is to know the corresponding private key; that an encrypted packet does not reveal the public key that was used to encrypt it; and that there is sufficient redundancy in messages so that the decryption algorithm can detect whether a ciphertext was encrypted with the expected public key.

We arrive at the following syntax for the spi calculus with public-key encryption. (This syntax is concise, rather than memorable.)

\[L, M, N ::= \]
\[\cdots \]
\[M^+ \quad \text{public part} \]
\[M^- \quad \text{private part} \]
\[\{[M]\}_N \quad \text{public-key encryption} \]

\[P, Q ::= \]
\[\cdots \]
\[\text{case } L \text{ of } \{[x]\}_N \text{ in } P \quad \text{decryption} \]

If \(M \) represents a key pair, then \(M^+ \) represents its public half and \(M^- \) represents its private half. Given a public key \(N \), the term \(\{[M]\}_N \) represents the result of the public-key encryption of \(M \) with \(N \). In \text{case } L \text{ of } \{[x]\}_N \text{ in } P, the variable \(x \) is bound in \(P \). This construct is useful when \(N \) is a private key \(K^- \); then it binds \(x \) to the \(M \) such that \(\{[M]\}_{K^+} \) is \(L \), if such an \(M \) exists.

It is also common to use key pairs for digital signatures. Private keys are used for signing, while public keys are used for checking signatures. We can represent digital signatures through the following extended syntax:

\[L, M, N ::= \]
\[\cdots \]
\[\{[M]\}_N \quad \text{private-key signature} \]

\[P, Q ::= \]
\[\cdots \]
\[\text{case } N \text{ of } \{[x]\}_M \text{ in } P \quad \text{signature check} \]
Given a private key N, the term $[[M]]_N$ represents the result of the signature of M with N. Again, the variable x is bound in P in the construct case N of $[[x]]_M$ in P. This construct is dual to case L of $[[x]]_N$ in P. The new construct is useful when N is a public key K^+; then it binds x to the M such that $[[M]]_{K^-}$ is L, if such an M exists. (Thus, we are assuming that M can be recovered from the result of signing it; but there is no difficulty in dropping this assumption.)

Formally, the semantics of the new constructs is captured with two new rules for the reduction relation:

Red Public Decrypt) case $[[M]]^{+}_N$ of $[[x]]^{-}_N$ in P $>$ $P[M/x]$

(Red Signature Check) case $[[M]]^{-}_N$ of $[[x]]^{+}_N$ in P $>$ $P[M/x]$

We believe that our basic theoretical results for the spi calculus still apply. As a small example, we can write the following public-key analogue for the protocol of Section 3.2.1:

\[
A(M) \triangleq \overline{c_{AB}}([[[M], [[H(M)]]_{K_A^-}]]_{K_B^+})
\]

\[
B \triangleq c_{AB}(x).\text{case } x \text{ of } [[y]]_{K_B^-} \text{ in }
\]

\[
\text{let } (y_1, y_2) = y \text{ in }
\]

\[
\text{case } y_2 \text{ of } [[z]]_{K_A^+} \text{ in }
\]

\[
[H(y_1) \text{ is } z] F(y_1)
\]

\[
\text{Inst}(M) \triangleq (\nu K_A)(\nu K_B)(A(M) \mid B)
\]

In this protocol, A sends M on the channel c_{AB}, signed with A’s private key and encrypted under B’s public key; the signature is applied to a hash of M rather than to M itself. On receipt of a message on c_{AB}, B decrypts using its private key, checks A’s signature using A’s public key, checks the hash, and applies F to the body of the message (to M). The key pairs K_A and K_B are restricted; but there would be no harm in sending their public parts K_A^+ and K_B^+ on a public channel.

Undoubtedly, other formalisations of public-key cryptography are possible, perhaps even desirable. In particular, we have represented cryptographic operations at an abstract level, and do not attempt to model closely the properties of any one algorithm. We are concerned with public-key encryption and digital signatures in general rather than with their RSA implementations, say. The RSA system satisfies equations that our formalisation does not capture. For example, in the RSA system, $[[[[M]]_{K^+}]]_{K^-}$ equals M. We leave the treatment of those equations for future work.
8 Conclusions

We have applied both the standard pi calculus and the new spi calculus in the description and analysis of security protocols. As examples, we chose protocols of the sort commonly found in the authentication literature. We showed how to represent the protocols, how to express their security properties, and how to prove some of these properties. Our model of protocols takes into account the possibility of attacks, but does not require writing explicit specifications for an attacker. In particular, we express secrecy properties as simple equations that mean indistinguishability from the point of view of an arbitrary attacker. To our knowledge, this sharp treatment of attacks has not been previously possible.

Although our examples are small, we have found them instructive. Some of the techniques that we developed may be amenable to automation; the experience in other process algebras is encouraging. Moreover, there seems to be no fundamental difficulty in writing other kinds of examples, such as protocols for electronic commerce. Unfortunately, the specifications for those protocols do not yet seem to be fully understood, even in informal terms [Mao96].

In both the pi calculus and the spi calculus, restriction and scope extrusion play a central role. The pi calculus provides an abstract treatment of channels, while the spi calculus expresses the cryptographic operations that usually underlie channels in systems for distributed security. Thus, the pi calculus and the spi calculus are appropriate at different levels.

Those two levels are however related. In particular, as we have discussed briefly, we can specify a security protocol abstractly and then implement it using cryptography. Similarly, we may give an API (application programming interface) for secure channels and implement it on top of an API for cryptography. In more formal terms, it should be possible to define cryptographic implementations for the pi calculus, translating restricted channels into public channels with encryption. Implementation relations such as these are useful in practice; they seem worth studying further.

Acknowledgements

Peter Sewell and Phil Wadler suggested improvements to a draft of this paper.
Appendices

A Encoding Encryption in the Pi Calculus

Before inventing the spi calculus, we considered but rejected several schemes for encoding encryption within the pi calculus.

An obvious first idea is to represent keys as channels, and encrypted communication as communication on restricted channels. This scheme works reasonably well in some examples, but it is not clear how to turn it into a general encoding. For example, it is not straightforward to represent data encrypted under several keys.

Milner has shown how to represent a piece of data as a process located at a channel \(m \), that is, a process listening on channel \(m \). A second scheme for encoding encryption extends Milner’s idea. Let \(F \) be a pi calculus abstraction (a process with an abstracted name) that represents some data. We can represent \(F \) encrypted with \(K \), to be located at \(m \), by the following abstraction:

\[
\{F\}_K \triangleq (m)m(J, n).[J \text{ is } K] F(n)
\]

Given a channel \(m \), the right-hand side is a process that inputs the pair \((J, n)\) off channel \(m \). If \(J \) is the key \(K \), then it runs \(F \) with the abstracted variable instantiated to \(n \); otherwise it does nothing. In other words, it offers access to \(F \) to anyone who can provide the secret key \(K \). We can then represent an abstraction that attempts to decrypt such an encrypted datum, located at \(m \), and locates the result at its parameter \(n \), as follows:

\[
Decrypt(m, K) \triangleq (n)m((K, n))
\]

When we locate these abstractions at names \(m \) and \(n \), we obtain the reactions:

\[
\{F\}_K(m) \mid Decrypt(m, K)(n) \rightarrow^* F(n)
\]

This representation certainly prevents anybody from accessing \(F \) unless they know \(K \). But it allows attacks:

(1) An agent who possesses a secret key must transmit it to the process representing the encrypted data. In the simple scheme described here there is nothing to stop an attacker from impersonating encrypted data and thereby obtaining the corresponding secret key.

85
(2) After decryption there is no guarantee that the message returned was really encrypted with the secret key. An attacker could masquerade as a piece of encrypted data and provide an incorrect message to anyone who asks.

A third scheme is based on a mild extension of the pi calculus in which channels may be multi-names, that is, tuples of names. We modify the encoding above so that the encrypted process \(\{F\}_K(m) \) inputs \(n \) off the multi-name channel \((m, K)\). Decryption amounts to sending \(n \) on this multi-name. Synchronisation on the pair \((m, K)\) guarantees simultaneously that both parties know both the location \(m \) of the data and the secret key \(K \). The two attacks above are therefore no longer possible. This scheme is attractive, because it enables us to remain close to the standard pi calculus. Unfortunately, this scheme does not account for protocols in which keys are made by hashing data, for instance.

A fourth scheme relies on a process, the “Global Cryptographic Device” (GCD for short), trusted by all participants; GCD mediates all encryption and decryption via a global list of encrypted messages. In this scheme there would be a private channel between each participant and GCD used by the participant to invoke encryption or decryption. To decrypt a message, the participant would send the necessary secret key to GCD, rather than to the purported encrypted message. We are reluctant to pursue this scheme because of its complexity.

Having syntax both for processes and data, as in the spi calculus, gives us advantages over these schemes. First, we avoid having to encode data as processes. In addition, we can axiomatise encryption and decryption, for both shared-key and public-key cryptography, directly in our operational semantics. This higher-level approach appears to be more convenient to work with than any approach based on encodings, while retaining many of the fundamental ideas of the pi calculus.

B Proofs about Commitment

In this section we prove Propositions 2, 3, and 4, from Section 5.1, which connect the relations of reaction, commitment, and exhibition of a barb.

We begin with a lemma that relates the free names of a process to the free names of any agent to which it commits.
Lemma 23

(1) If \(P \xrightarrow{\eta} Q \) then \(\text{fn}(Q) \subseteq \text{fn}(P) \).

(2) If \(P \xrightarrow{m} (x)Q \) then \(\{m\} \cup \text{fn}(Q) \subseteq \text{fn}(P) \).

(3) If \(P \xrightarrow{m} (\nu \bar{n})(M)Q \) then \(\{m\} \cup \text{fn}((\nu \bar{n})(M)Q) \subseteq \text{fn}(P) \) and \(\{\bar{n}\} \subseteq \text{fn}(M) \).

Proof By induction on the derivation of the commitment. \(\square \)

The purpose of the next lemma is to show that \(P \xrightarrow{\eta} Q \) implies \(P \rightarrow Q \), half of Proposition 3.

Lemma 24

(1) If \(P \xrightarrow{m} (x)Q \) then there are \(Q_1, Q_2 \), and names \(\bar{p} \) such that \(m \notin \{\bar{p}\} \), \(P \equiv (\nu \bar{p})(Q_1 \mid m(x).Q_2) \), and \(Q[M/x] \equiv ((\nu \bar{p})(Q_1 \mid Q_2))[M/x] \) for any closed \(M \).

(2) If \(P \xrightarrow{m} (\nu \bar{n})(M)Q \) then there are \(Q_1, Q_2 \), and names \(\bar{p} \) such that \(m \notin \{\bar{p}\} \), \(\text{fn}(M) \cap \{\bar{p}\} = \emptyset \), \(P \equiv (\nu \bar{n}, \bar{p})(Q_1 \mid \bar{p}(M).Q_2) \), and \(Q \equiv (\nu \bar{p})(Q_1 \mid Q_2) \).

(3) If \(P \xrightarrow{\eta} Q \) then \(P \rightarrow Q \).

Proof In each case, by induction on the derivation of the commitment of \(P \). \(\square \)

The key fact we need for the other direction of Proposition 3 is that structural equivalence is a strong bisimulation.

Lemma 25 \(P \equiv Q \) implies that:

(1) whenever \(P \xrightarrow{\alpha} A \) there is \(B \) with \(Q \xrightarrow{\alpha} B \) and \(A \equiv B \);

(2) whenever \(Q \xrightarrow{\alpha} B \) there is \(A \) with \(P \xrightarrow{\alpha} A \) and \(A \equiv B \).

Hence structural equivalence is a strong bisimulation.

Proof By induction on the derivation of \(P \equiv Q \).

First, we consider the possibility that \(P \equiv Q \) is an instance of one of the six basic equations of structural equivalence. We show two representative cases.
(Struct Switch) Here \(P = (\nu m)(\nu n)R \) and \(Q = (\nu n)(\nu m)R \). The case where \(m \) and \(n \) are the same is trivial. In the case where \(m \) and \(n \) are distinct, we examine the commitments of \(R \), which determine the commitments of both \(P \) and \(Q \).

- \(R \xrightarrow{p} (x)R' \). If \(p \in \{m, n\} \) then neither \(P \) nor \(Q \) has a commitment. Otherwise, the only commitments of \(P \) and \(Q \) are:

\[
P \xrightarrow{p} (x)(\nu m)(\nu n)R' \quad \text{and} \quad Q \xrightarrow{p} (x)(\nu n)(\nu m)R'
\]

We have \(((\nu m)(\nu n)R')[M/x] \equiv ((\nu n)(\nu m)R')[M/x]\) for any closed \(M \), so we are done.

- \(R \xrightarrow{r} R' \). The only commitments of \(P \) and \(Q \) are:

\[
P \xrightarrow{r} (\nu m)(\nu n)R' \quad \text{and} \quad Q \xrightarrow{r} (\nu n)(\nu m)R'
\]

and we have \((\nu m)(\nu n)R' \equiv (\nu n)(\nu m)R'\).

- \(R \xrightarrow{\nu} (\nu \tilde{n})\langle M \rangle R' \). We may assume that the set of bound names \(\{\tilde{n}\} \) is disjoint from \(\{m, n\} \). If \(p \in \{m, n\} \) then neither \(P \) nor \(Q \) has a commitment. Otherwise, the only commitment of \(P \) is one of the following:

1. \(P \xrightarrow{\nu} (\nu \tilde{n})\langle M \rangle(\nu m)(\nu n)R' \) if \(m \notin \text{fv}(M) \) and \(n \notin \text{fv}(M) \);
2. \(P \xrightarrow{\nu} (\nu m, \tilde{n})\langle M \rangle(\nu n)R' \) if \(m \in \text{fv}(M) \) and \(n \notin \text{fv}(M) \);
3. \(P \xrightarrow{\nu} (\nu n, \tilde{n})\langle M \rangle(\nu m)R' \) if \(m \notin \text{fv}(M) \) and \(n \in \text{fv}(M) \);
4. \(P \xrightarrow{\nu} (\nu m, n, \tilde{n})\langle M \rangle R' \) if \(m \in \text{fv}(M) \) and \(n \in \text{fv}(M) \).

In each case the only commitment of \(Q \) matches the commitment of \(P \). In case (4), \(Q \xrightarrow{\nu} (\nu n, m, \tilde{n})\langle M \rangle R' \) and we have:

\[
(\nu m, n, \tilde{n})\langle M \rangle R' \equiv (\nu n, m, \tilde{n})\langle M \rangle R'
\]

since the definition of \(\equiv \) allows the restricted names to be permuted. (If this permutation were not allowed, (Struct Switch) would prevent structural equivalence from being a strong bisimulation.)

In each of these cases, the lemma’s parts (1) and (2) follow.

(Struct Drop) Here \(P = (\nu m)0 \) and \(Q = 0 \). Therefore, neither \(P \) nor \(Q \) has any commitments, so they trivially satisfy parts (1) and (2).
The cases for (Struct Nil) and (Struct Comm) are simple. The cases for
(Struct Extrusion) and (Struct Assoc) involve larger case analyses—but are
no harder—than the cases shown.

Second, we consider the possibility that \(P \equiv Q \) is obtained through one
of the inference rules of structural equivalence.

(Struct Red) Here \(P > Q \). By inspecting the definition of the reduction
relation, we can see that the only commitment rule that applies to \(P \)
is (Comm Red). Moreover, if \(P > Q' \) then \(Q' \) is \(Q \). Therefore for any
\(\alpha \) and \(A \), we have that \(P \xrightarrow{\alpha} A \) iff \(Q \xrightarrow{\alpha} A \). Since \(\equiv \) is reflexive,
parts (1) and (2) follow.

(Struct Refl) Here \(P = Q \), so parts (1) and (2) follow at once.

(Struct Symm) Here \(P \equiv Q \) is obtained from \(Q \equiv P \). Part (2) of the
induction hypothesis supplies part (1) of what is to be proved; part (1)
of the induction hypothesis supplies the other part.

(Struct Trans) Here \(P \equiv Q \) is obtained from \(P \equiv P' \) and \(P' \equiv Q \), for some
intermediate process \(P' \). For part (1), suppose that \(P \xrightarrow{\alpha} A \). Since
\(P \equiv P' \), the induction hypothesis implies that there is an agent \(A' \) such
that \(P' \xrightarrow{\alpha} A' \) and \(A \equiv A' \). Since \(P' \equiv Q \), the induction hypothesis
implies that there is an agent \(B \) such that \(Q \xrightarrow{\alpha} B \) and \(A' \equiv B \). Since
\(\equiv \) is transitive, so is \(\equiv \). Therefore we have \(A \equiv B \), completing the
proof of part (1). Part (2) follows by symmetry.

(Struct Par) Here \(P \equiv Q \) is obtained from \(P_1 \equiv Q_1 \) with \(P = P_1 \mid R \) and
\(Q = Q_1 \mid R \). For part (1), suppose that \(P \xrightarrow{\alpha} A \). There are four cases
to consider.

(Comm Inter 1) Here \(\alpha = \tau \), \(P_1 \xrightarrow{m} (x)P_2 \), \(R \xrightarrow{\tau} (\nu \overline{m})(P_2[M/x] \mid R') \), and
\(A = (\nu \overline{m})(P_2[M/x] \mid R') \). By induction hypothesis, there exists \(Q_2 \)
such that \(Q_1 \xrightarrow{m} (x)Q_2 \) and \((x)P_2 \equiv (x)Q_2 \). Therefore, since \(\overline{M} \)
is closed, \(P_2[M/x] \equiv Q_2[M/x] \). We let \(B = (\nu \overline{m})(Q_2[M/x] \mid R') \).
By (Comm Inter 1), we have \(Q \xrightarrow{\alpha} B \). Moreover \(A \equiv B \), since
\[(\nu \overline{m})(P_2[M/x] \mid R') \equiv (\nu \overline{m})(Q_2[M/x] \mid R') \]
and \(A \) and \(B \) are processes.
(Comm Inter 2) Here $\alpha = \tau$, $P_1 \xrightarrow{m} (\nu\bar{n})(M)P_2$, $R \xrightarrow{m} (x)R'$, and $A = (\nu\bar{n})(P_2 \mid R'[M/x])$. By induction hypothesis, there exist Q_2 and \bar{m} such that $Q_1 \xrightarrow{\bar{m}} (\nu\bar{m})(M)Q_2$, $P_2 \equiv Q_2$, and \bar{m} is a permutation of \bar{n}. We let $B = (\nu\bar{m})(Q_2 \mid R'[M/x])$. By (Comm Inter 2), we have $Q \xrightarrow{\tau} B$ and $A \equiv B$, since
\[(\nu\bar{n})(P_2 \mid R'[M/x]) \equiv (\nu\bar{n})(Q_2 \mid R'[M/x])\]
and then, by (Struct Switch) and (Struct Res),
\[(\nu\bar{m})(P_2 \mid R'[M/x]) \equiv (\nu\bar{m})(Q_2 \mid R'[M/x])\]

(Comm Par 1) Here $P_1 \xrightarrow{\alpha} A_1$ and $A = A_1 \mid R$. By induction hypothesis, there exists B_1 such that $Q_1 \xrightarrow{\alpha} B_1$ and $A_1 \equiv B_1$. We let $B = B_1 \mid R$. By (Comm Par 1), we have $Q \xrightarrow{\alpha} B$. Whether A_1 and B_1 are processes, abstractions, or concretions, $A_1 \equiv B_1$ implies $A_1 \mid R \equiv B_1 \mid R$.

(Comm Par 2) Here $R \xrightarrow{\alpha} A_1$ and $A = P \mid A_1$. By (Comm Par 2), we have $Q \xrightarrow{\alpha} Q \mid A_1$. Whether A_1 is a process, an abstraction, or a concretion, $P \equiv Q$ implies $P \mid A_1 \equiv Q \mid A_1$.

This completes the proof of part (1); part (2) follows by symmetry.

(Struct Res) Here $P \equiv Q$ is obtained from $P_1 \equiv Q_1$, where $P = (\nu m)P_1$ and $Q = (\nu m)Q_2$. Again by symmetry we need to consider only part (1). Suppose that $P \xrightarrow{\alpha} A$. The rule (Comm Res) is the only one that can yield a commitment from a restriction. So there must be A_1 such that $P_1 \xrightarrow{\alpha} A_1$ with $\alpha \notin \{m, \bar{m}\}$ and $A = (\nu m)A_1$. By induction hypothesis, there is B_1 with $Q_1 \xrightarrow{\alpha} B_1$ and $A_1 \equiv B_1$. By (Struct Res), we have $Q \xrightarrow{\alpha} (\nu m)B_1$. Whether A_1 and B_1 are processes, abstractions, or concretions, $A_1 \equiv B_1$ implies $(\nu m)A_1 \equiv (\nu m)B_1$. Therefore part (1) follows.

We can now prove the three propositions claimed in Section 5.1.

Proof of Proposition 2 \[P \downarrow \beta \Leftrightarrow \exists A (P \xrightarrow{\beta} A) \]

Proof This is not entirely trivial, as the \downarrow relation is defined using structural equivalence, but the transition relation $\xrightarrow{\beta}$ is not. We can easily show
that $P \xrightarrow{\beta} A$ implies $P \downarrow \beta$ by induction on the derivation of $P \xrightarrow{\beta} A$, using (Barb Struct) where necessary. On the other hand, we can show that $P \downarrow \beta$ implies $\exists A (P \xrightarrow{\beta} A)$ by induction on the derivation of $P \downarrow \beta$. The case of (Barb Struct) needs the fact that if $\exists A (P \xrightarrow{\beta} A)$ and $P \equiv Q$ then $\exists A (Q \xrightarrow{\beta} A)$ also, which follows from Lemma 25.

Proof of Proposition 3 $P \rightarrow Q$ iff $P \xrightarrow{\tau} \equiv Q$.

Proof For the backwards direction suppose $P \xrightarrow{\tau} R$ and $R \equiv Q$. By Lemma 24(3), $P \rightarrow R$, and then $P \rightarrow Q$ by (React Struct).

We can show that $P \rightarrow Q$ implies that there exists R such that $P \xrightarrow{\tau} R$ and $R \equiv Q$ by induction on the derivation of $P \rightarrow Q$. The only interesting case is (React Struct). Suppose that $P \rightarrow Q$ follows from $P \equiv P', P' \rightarrow Q'$, and $Q' \equiv Q$. By induction hypothesis, $P' \xrightarrow{\tau} Q''$ with $Q'' \equiv Q'$. By Lemma 25, structural equivalence is a strong bisimulation, so $P \xrightarrow{\tau} R$ for some R such that $R \equiv Q''$. This with the previous equations gives $R \equiv Q$ as required.

Proof of Proposition 4 P passes a test (R, β) iff there exist an agent A and a process Q such that $P \mid R \xrightarrow{\tau}^* Q$ and $Q \xrightarrow{\beta} A$.

Proof By definition, P passes a test (R, β) iff $P \mid R \downarrow \beta$, which holds iff there is Q with $P \mid R \rightarrow^* Q$ and $Q \downarrow \beta$, which by (Barb Struct), Lemma 25, and Propositions 2 and 3 is equivalent to there being Q and A with $P \mid R \xrightarrow{\tau}^* Q$ and $Q \xrightarrow{\beta} A$.

C Proofs about Replication

This section is devoted to lemmas concerning the interaction between replication and commitment, reaction, and convergence.

Lemma 26

1. If $!P \xrightarrow{m} (x)Q$, then there is R with $P \xrightarrow{m} (x)R$ and $Q[M/x] \equiv R[M/x] \upharpoonright !P$ for any closed M.

2. If $!P \xrightarrow{m} (\nu \bar{n})(M)Q$, then there is R with $P \xrightarrow{m} (\nu \bar{n})(M)R$ and $Q \equiv R \upharpoonright !P$.

91
(3) If $!P \rightarrow Q$, then there is R with $P \mid P \rightarrow R$ and $Q \equiv R \mid !P$.

Proof

(1) By induction on the derivation of $!P \xrightarrow{m} (x)Q$. Such a commitment must be derived from $P \mid !P \xrightarrow{m} (x)Q$ via (Comm Red) and (Red Repl). The latter commitment must be derived from (Comm Par 1) or (Comm Par 2). In the first case, we have $P \xrightarrow{m} (x)R$ and $Q = R \mid !P$, so we are done. In the second case, we have $!P \xrightarrow{m} (x)R'$ and $Q = P \mid R'$. By induction hypothesis, there is R such that $P \xrightarrow{m} (x)R$ and $R'[M/x] \equiv R[M/x] \mid !P$ for any closed M. Hence, for any closed M, $Q[M/x] \equiv P \mid R[M/x] \mid !P \equiv R[M/x] \mid !P$, so we are done.

(2) By induction on the derivation of $!P \xrightarrow{m} (\nu\bar{n})(M)Q$. Such a commitment must be derived from $P \mid !P \xrightarrow{m} (\nu\bar{n})(M)Q$ via (Comm Red) and (Red Repl). The latter commitment must be derived from (Comm Par 1) or (Comm Par 2). In the first case, we immediately have $P \xrightarrow{m} (\nu\bar{n})(M)R$ and $Q = R \mid !P$. In the second case, we have $!P \xrightarrow{m} (\nu\bar{n})(M)R'$ and $Q = P \mid R'$. By induction hypothesis, there is R such that $P \xrightarrow{m} (\nu\bar{n})(M)R$ and $R' \equiv R \mid !P$. Hence $Q \equiv P \mid R \mid !P \equiv R \mid !P$.

(3) By induction on the derivation of $!P \rightarrow Q$. Such a commitment must be derived from $P \mid !P \rightarrow Q$ via (Comm Red) and (Red Repl). There are four rules that could yield the latter commitment.

(Comm Par 1) Here $P \rightarrow R'$ and $Q = R' \mid !P$. Let $R = R' \mid P$. We may derive $P \mid P \rightarrow R$ by (Comm Par 1) and indeed $Q \equiv R' \mid P \mid !P \equiv R \mid !P$.

(Comm Par 2) Here $!P \rightarrow R'$ and $Q = P \mid R'$. By induction hypothesis, there is R such that $P \mid P \rightarrow R$ and $R' \equiv R \mid !P$. Since $Q \equiv P \mid R \mid !P \equiv R \mid !P$, we are done.

(Comm Inter 1) Here $P \xrightarrow{m} (x)P_1$ and $!P \xrightarrow{m} (\nu\bar{n})(M)P_2$ with $Q = (\nu\bar{n})(P_1[M/x] \mid P_2)$. By part (2), there is R such that $P \xrightarrow{m} (\nu\bar{n})(M)R$ and $P_2 \equiv R \mid !P$. By (Comm Inter 1), $P \mid P \rightarrow (\nu\bar{n})(P_1[M/x] \mid R)$ and we can calculate the following:

$$Q = (\nu\bar{n})(P_1[M/x] \mid P_2)$$
\[\equiv (\nu \vec{n})(P_1[M/x] \mid R \mid !P) \]
\[\equiv (\nu \vec{n})(P_1[M/x] \mid R) \mid !P \]

The last step uses (Struct Extrusion), and the fact that we may assume that the bound names \{\vec{n}\} do not occur free in \(P \).

\textbf{(Comm Inter 2)} Here \(P \xrightarrow{m} (\nu \vec{n})(M)P_1 \) and \(!P \xrightarrow{m} (x)P_2 \) with \(Q = (\nu \vec{n})(P_1 \mid P_2[M/x]) \). By part (1), there is \(R \) such that \(P \xrightarrow{m} (x)R \) with \(P_2[M/x] \equiv R[M/x] \mid !P \). By (Comm Inter 2), \(P \mid P \xrightarrow{r} (\nu \vec{n})(P_1 \mid R[M/x]) \) and we can calculate:

\[Q = (\nu \vec{n})(P_1 \mid P_2[M/x]) \]
\[\equiv (\nu \vec{n})(P_1 \mid (R[M/x] \mid !P)) \]
\[\equiv (\nu \vec{n})(P_1 \mid R[M/x] \mid !P) \]

The last step uses (Struct Extrusion) and the fact that we may assume that the bound variable \(x \) and the bound names \{\vec{n}\} are not free in \(P \).

This completes the proof of part (3).

\[\square \]

Intuitively, part (3) states that any reaction of \(!P \) can be obtained from two copies of \(P \) running in parallel. As Pierce and Sangiorgi [PS93] have remarked, we can strengthen part (3) to require only one copy of \(P \), but this stronger property would fail for an extended language with a choice construct. The claim with two copies would remain true for such an extended language.

Lemma 27 Suppose \(!P \mid R \xrightarrow{r} Q \). Then there is \(Q' \) such that \(Q \equiv !P \mid Q' \) and \(P \mid P \mid R \xrightarrow{r} Q' \).

Proof By case analysis of the rules that could yield \(!P \mid R \xrightarrow{r} Q \).

\textbf{(Comm Par 1)} Here \(!P \xrightarrow{r} P' \) and \(Q = P'' \mid R \). By Lemma 26 there is \(P'' \) with \(P \mid P \xrightarrow{r} P'' \) and \(P'' \equiv P'' \mid !P \). Let \(Q' = P'' \mid R \). By (Comm Par 1), \(P \mid P \mid R \xrightarrow{r} Q' \), and \(Q \equiv P'' \mid !P \mid R \equiv !P \mid Q' \).

\textbf{(Comm Par 2)} Here \(R \xrightarrow{r} R' \) and \(Q = !P \mid R' \). Let \(Q' = P \mid P \mid R' \). By (Comm Par 2) twice, \(P \mid P \mid R \xrightarrow{r} Q' \). Moreover, \(Q \equiv !P \mid P \mid P \mid R' \equiv !P \mid Q' \).
(Comm Inte r 1) Here $!P \xrightarrow{m} (x)P_1$ and $R \xrightarrow{m} (\nu \tilde{n})(M)R'$ with $Q = (\nu \tilde{n})(P_1[M/x] \mid R')$. By Lemma 26 there is P_2 with $P \xrightarrow{m} (x)P_2$ and $P_1[M/x] \equiv P_2[M/x] \mid !P$. Let $Q' = (\nu \tilde{n})(P \mid P_2[M/x] \mid R')$. By (Comm Par 2) and (Comm Inte r 1), $P \mid P \mid R \xrightarrow{\tau} Q'$. Moreover, $Q \equiv (\nu \tilde{n})(P_2[M/x] \mid !P) \mid R') \equiv !P \mid Q'$, since we may assume that the bound names $\{\tilde{n}\}$ and the bound variable x do not occur free in P.

(Comm Inte r 2) Here $!P \xrightarrow{m} (\nu \tilde{n})(M)P_1$ and $R \xrightarrow{m} (x)R'$ with $Q = (\nu \tilde{n})(P_1 \mid R'[M/x])$. By Lemma 26 there is P_2 with $P \xrightarrow{m} (\nu \tilde{n})(M)P_2$ and $P_1 \equiv P_2 \mid !P$. Let $Q' = (\nu \tilde{n})(P \mid P_2 \mid R'[M/x])$. By (Comm Par 2) and (Comm Inte r 2), $P \mid P \mid R \xrightarrow{\tau} Q'$. Moreover, $Q \equiv (\nu \tilde{n})(P_2 \mid !P \mid R'[M/x]) \equiv !P \mid Q'$.

For $n \geq 0$, we let $P \rightarrow^n Q$ mean that $P = P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow \cdots \rightarrow P_n = Q$ for some processes P_0, P_1, \ldots, P_n.

Lemma 28

1. Whenever $!P \mid R \rightarrow^n Q$ there is Q' with $(\Pi_{i \in 1..n} P) \mid R \rightarrow^n Q'$ and $Q \equiv !P \mid Q'$.

2. Whenever $!P \mid R \Downarrow \beta$ there is n such that $(\Pi_{i \in 1..n} P) \mid R \Downarrow \beta$.

Proof

1. By induction on n. In case $n = 0$, $!P \mid R = Q$, so we let $Q' = R$. Otherwise, we assume that the claim holds for n, and prove it for $n + 1$. We suppose, then, the following:

$!P \mid R \rightarrow^n Q_n \rightarrow Q$

By induction hypothesis, there is Q'_n with

$(\Pi_{i \in 1..n} P) \mid R \rightarrow^n Q'_n$

and $Q_n \equiv !P \mid Q'_n$. By Proposition 3, $!P \mid Q'_n \rightarrow Q$ implies that $!P \mid Q'_n \xrightarrow{\tau} Q^*$ for some $Q^* \equiv Q$. By Lemma 27, it follows that there is Q' such that $P \mid P \mid Q'_n \xrightarrow{\tau} Q'$ and $Q^* \equiv !P \mid Q'$, so $Q \equiv !P \mid Q'$. By Proposition 3, it follows that $P \mid P \mid Q'_n \rightarrow Q'$. By (React Par), we obtain:

$(\Pi_{i \in 1..2(n+1)} P) \mid R \equiv P \mid P \mid (\Pi_{i \in 1..n} P) \mid R \rightarrow^n P \mid P \mid Q'_n \rightarrow Q'$

and thus $(\Pi_{i \in 1..2(n+1)} P) \mid R \rightarrow^{n+1} Q'$ and $Q \equiv !P \mid Q'$.

94
(2) If \(\triangledown P \mid R \downarrow_\beta \) then there must be \(n \) and \(Q \) such that \(\triangledown P \rightarrow^n Q \) and \(Q \downarrow_\beta \). By the previous part, there is \(Q' \) with \((\Pi_{i\in 1,n} P) \mid R \rightarrow^n Q' \) and \(Q \equiv \triangledown P \mid Q' \). We have \(\triangledown P \mid Q' \downarrow_\beta \); hence \(P \mid Q' \downarrow_\beta \), by Lemma 26 and Proposition 2. By (React Par), we obtain:

\[
(\Pi_{i\in 1,n+1} P) \mid R \equiv P \mid (\Pi_{i\in 1,n} P) \mid R \rightarrow^n P \mid Q' \downarrow_\beta
\]

and hence \((\Pi_{i\in 1,n+1} P) \mid R \downarrow_\beta \). □

Proposition 29 If \((\nu \overline{\phi})(P_1 \mid \Pi_{i\in 1,n} P_2) \simeq (\nu \overline{\phi})(Q_1 \mid \Pi_{i\in 1,n} Q_2) \) for all \(n \geq 0 \), then \((\nu \overline{\phi})(P_1 \mid !P_2) \simeq (\nu \overline{\phi})(Q_1 \mid !Q_2) \).

Proof Assume that \((\nu \overline{\phi})(P_1 \mid \Pi_{i\in 1,n} P_2) \simeq (\nu \overline{\phi})(Q_1 \mid \Pi_{i\in 1,n} Q_2) \) for all \(n \geq 0 \). Consider an arbitrary test \((R, \beta)\), and suppose that \((\nu \overline{\phi})(P_1 \mid !P_2) \) passes this test, that is, \((\nu \overline{\phi})(P_1 \mid !P_2) \mid R \downarrow_\beta \). We may assume without loss of generality that the bound names \(\overline{\phi} \) do not occur in \(R \) or \(\beta \). By Lemmas 31(1, 5) and 28(2) there exists \(n \) such that \((\nu \overline{\phi})(P_1 \mid \Pi_{i\in 1,n} P_2) \mid R \downarrow_\beta \). By hypothesis, we have \((\nu \overline{\phi})(Q_1 \mid \Pi_{i\in 1,n} Q_2) \mid R \downarrow_\beta \) also. Since \(!Q_1 \equiv !Q_1 \mid \Pi_{i\in 1,n} Q_1 \), Lemma 31(1-2, 5) yields \((\nu \overline{\phi})(Q_1 \mid !Q_2) \mid R \downarrow_\beta \), that is, \((\nu \overline{\phi})(Q_1 \mid !Q_2) \) passes \((R, \beta)\). Thus, \((\nu \overline{\phi})(Q_1 \mid !Q_2) \) passes the same tests as \((\nu \overline{\phi})(P_1 \mid !P_2) \). Symmetrically, \((\nu \overline{\phi})(P_1 \mid !P_2) \) passes the same tests as \((\nu \overline{\phi})(Q_1 \mid !Q_2) \). We conclude that \((\nu \overline{\phi})(P_1 \mid !P_2) \simeq (\nu \overline{\phi})(Q_1 \mid !Q_2) \). □

Proposition 30 \(!P \mid Q \simeq !P \mid !Q \).

Proof First, we prove \(!P \mid Q \equiv !P \mid !Q \). Suppose that \(!P \mid Q \mid R \downarrow_\beta \) for some arbitrary test \((R, \beta)\). By Lemma 28(2) there exists \(n \) such that \(\Pi_{i\in 1,n}(P \mid Q) \mid R \downarrow_\beta \). By Lemma 31(1), \((\Pi_{i\in 1,n} P) \mid (\Pi_{i\in 1,n} Q) \mid R \downarrow_\beta \). By Lemma 31(2), \(!P \mid !Q \mid (\Pi_{i\in 1,n} P) \mid (\Pi_{i\in 1,n} Q) \mid R \downarrow_\beta \). Thus, \(!P \mid !Q \) passes the same tests as \(!P \mid Q \).

Second, we prove \(!P \mid Q \equiv !P \mid !Q \). Suppose that \(!P \mid !Q \mid R \downarrow_\beta \) for some arbitrary test \((R, \beta)\). Applying Lemma 28(2) twice, we obtain that there exist \(m \) and \(n \) such that \((\Pi_{i\in 1,m} P) \mid (\Pi_{i\in 1,n} Q) \mid R \downarrow_\beta \). By Lemma 31(2),

\[
!(P \mid Q) \mid (\Pi_{i\in 1,m} Q) \mid (\Pi_{i\in 1,n} P) \mid (\Pi_{i\in 1,m} P) \mid (\Pi_{i\in 1,n} Q) \mid R \downarrow_\beta
\]

Since \(!P \mid Q \equiv !(P \mid Q) \mid (\Pi_{i\in 1,m} Q) \mid (\Pi_{i\in 1,n} P) \mid (\Pi_{i\in 1,m} P) \mid (\Pi_{i\in 1,n} Q) \), Lemma 31(1) yields \(!P \mid Q \mid R \downarrow_\beta \). Thus, \(!P \mid Q \) passes the same tests as \(!P \mid !Q \). □
D Proofs about Equivalences

D.1 Testing Equivalence

The following are auxiliary facts needed for the proofs in this section.

Lemma 31

1. \(P \Downarrow \beta \) and \(P \equiv Q \) imply \(Q \Downarrow \beta \).
2. \(P \Downarrow \beta \) implies \(P \vdash Q \Downarrow \beta \).
3. If \((\nu m)P \xrightarrow{\gamma} R\) there is \(Q \) with \(P \xrightarrow{\gamma} Q \) and \(R = (\nu m)Q \).
4. If \((\nu m)P \Downarrow \beta\) then \(P \Downarrow \beta \) and \(\beta \notin \{m, \overline{m}\} \).
5. \((\nu m)P \Downarrow \beta\) iff \(P \Downarrow \beta \) and \(\beta \notin \{m, \overline{m}\} \).

Proof

1. By analysis of the last rule of the derivation of \(P \Downarrow \beta \). In case (Conv Barb), we have \(P \Downarrow \beta \). By (Barb Struct), \(Q \Downarrow \beta \) too. By (Conv Barb), \(Q \Downarrow \beta \). In case (Conv React), we have \(P \rightarrow P' \) and \(P' \Downarrow \beta \). By (React Struct), we have \(Q \rightarrow P' \), and then by (Conv React) \(Q \Downarrow \beta \).
2. By induction on the derivation of \(P \Downarrow \beta \), using rules (Barb Par) and (React Par).
3. (Comm Res) is the only rule that might yield \((\nu m)P \xrightarrow{\gamma} R\). Hence there is \(Q \) with \(P \xrightarrow{\gamma} Q \) and \(R = (\nu m)Q \).
4. By Proposition 2, there is \(A \) such that \((\nu m)P \xrightarrow{\beta} A\). This commitment can only have been derived from (Comm Res), and so it must be that \(A = (\nu m)B \) with \(P \xrightarrow{\beta} B \) and \(\beta \notin \{m, \overline{m}\} \). By Proposition 2 again, we obtain \(P \Downarrow \beta \).
5. Suppose that \(P \Downarrow \beta \) with \(\beta \notin \{m, \overline{m}\} \). Therefore, there is \(Q \) with \(P \rightarrow^* Q \) and \(Q \Downarrow \beta \). By Proposition 3, there is \(Q' \) with \(P \xrightarrow{\gamma}^* Q' \) and \(Q' \equiv Q \). By repeated use of (Comm Res), \((\nu m)P \xrightarrow{\gamma}^* (\nu m)Q'\), so \((\nu m)P \rightarrow^* (\nu m)Q\) by Proposition 3 since \((\nu m)Q' \equiv (\nu m)Q\). Moreover, \((\nu m)Q \Downarrow \beta \) by (Barb Res). Therefore, \((\nu m)P \Downarrow \beta \).
If \((\nu m)P \Downarrow \beta\), then there must be \(Q'\) with \((\nu m)P \rightarrow^* Q'\) and \(Q' \Downarrow \beta\). By Proposition 3, there is \(Q''\) such that \((\nu m)P \rightarrow^* Q''\) and \(Q'' \equiv Q'\). By repeated use of part (3), there is \(Q\) such that \(P \rightarrow^* Q\) and \(Q'' = (\nu m)Q\). By (Barb Struct), \(Q' \Downarrow \beta\) implies \(Q'' \Downarrow \beta\), and part (4) yields \(Q \Downarrow \beta\) with \(\beta \notin \{m, \overline{m}\}\). Finally, \(P \rightarrow^* Q\) implies \(P \rightarrow^* Q\) by Proposition 3; combining this with \(Q \Downarrow \beta\), we obtain \(P \Downarrow \beta\).

Lemma 32 \(\equiv \subseteq \simeq\).

Proof Lemma 31(1) says that if \(P \Downarrow \beta\) and \(P \equiv Q\) then \(Q \Downarrow \beta\). The result then follows from the definition of \(\simeq\) in terms of \(\Downarrow\). \(\square\)

If \(\mathcal{R}\) is a relation on closed processes, we let its *open extension* \(\mathcal{R}^0\) be the relation on arbitrary processes such that \(P\mathcal{R}^0 Q\) if and only if \(P\sigma \mathcal{R} Q\sigma\) for any substitution \(\sigma\) of closed terms for variables such that both \(P\sigma\) and \(Q\sigma\) are closed.

A congruence on closed processes is an equivalence relation \(\mathcal{S}\) on closed processes such that \(P\mathcal{S} Q\) implies \(\mathcal{C}[P] \mathcal{S} \mathcal{C}[Q]\) for every closed context \(\mathcal{C}\). Similarly, a congruence on open processes is an equivalence relation \(\mathcal{S}\) on open processes such that \(P\mathcal{S} Q\) implies \(\mathcal{C}[P] \mathcal{S} \mathcal{C}[Q]\) for every context \(\mathcal{C}\). The notion of precongruence is analogous, except that a precongruence must be a preorder instead of an equivalence relation.

We give an alternative characterisation of congruence and precongruence that avoids the use of contexts. When \(\mathcal{R}\) is a relation on open processes, we let its *compatible refinement* \(\mathcal{R}\) be the relation on open processes given by the rules in Figure 3.

Lemma 33 Suppose that \(\mathcal{R}\) is a preorder. Then \(\mathcal{R}\) is a precongruence (closed under arbitrary contexts) iff \(\mathcal{R} \subseteq \mathcal{R}\).

See [Gor95] for the proof of a similar proposition.

Lemma 34 The open extension of testing equivalence, \(\simeq^0\), is a congruence.

Proof Since \(\equiv^0\) is clearly a preorder, it suffices to show that \(\equiv^0 \subseteq \equiv^0\). Given two open processes \(P'\) and \(Q'\), we assume that \(P' \equiv^0 Q'\) and prove that \(P' \equiv^0 Q'\). For this proof, we show that, for every test \((R, \beta)\) and every substitution \(\sigma\) for the free variables of \(P'\) and \(Q'\), if \(P'\sigma\) passes \((R, \beta)\) then \(Q'\sigma\) passes \((R, \beta)\). According to Proposition 4, it suffices to assume that
\[
\begin{align*}
\text{(Comp Out)} & \\
\frac{P \mathcal{R} Q}{M \langle N \rangle \cdot P \mathcal{R} M \langle N \rangle \cdot Q} \\
\text{(Comp In)} & \\
\frac{P \mathcal{R} Q}{M(x). P \mathcal{R} M(x). Q} \\
\text{(Comp Par)} & \\
\frac{P_1 \mathcal{R} Q_1 \quad P_2 \mathcal{R} Q_2}{P_1 \parallel P_2 \mathcal{R} Q_1 \parallel Q_2} \\
\text{(Comp Res)} & \\
\frac{P \mathcal{R} Q}{(\nu n) P \mathcal{R} (\nu n) Q} \\
\text{(Comp Repl)} & \\
\frac{P \mathcal{R} Q}{!P \mathcal{R} !Q} \\
\text{(Comp Match)} & \\
\frac{P \mathcal{R} Q}{[M \text{ is } N] P \mathcal{R} [M \text{ is } N] Q} \\
\text{(Comp Nil)} & \\
\frac{P \mathcal{R} Q}{0 \mathcal{R} 0} \\
\text{(Comp Split)} & \\
\frac{P \mathcal{R} Q}{\text{let } (x, y) = M \text{ in } P \mathcal{R} \text{ let } (x, y) = M \text{ in } Q} \\
\text{(Comp IntCase)} & \\
\frac{P_1 \mathcal{R} Q_1 \quad P_2 \mathcal{R} Q_2}{\text{case } M \text{ of } 0 : P_1 \mathcal{R} \text{ suc}(x) : P_2 \mathcal{R} \text{ case } M \text{ of } 0 : Q_1 \mathcal{R} \text{ suc}(x) : Q_2} \\
\text{(Comp Decrypt)} & \\
\frac{P \mathcal{R} Q}{\text{case } N \text{ of } \{x\}_M \text{ in } P \mathcal{R} \text{ case } N \text{ of } \{x\}_M \text{ in } Q}
\end{align*}
\]

Figure 3: Rules of Compatible Refinement
there exist a process P' and an agent A such that $P' \sigma \parallel R \xrightarrow{\tau}^{*} P''$ and $P'' \xrightarrow{\beta} A$, and to prove that there exist a process Q'' and an agent B such that $Q' \sigma \parallel R \xrightarrow{\tau}^{*} Q''$ and $Q'' \xrightarrow{\beta} B$. The argument is by case analysis of the rules that define Ξ^{3}.

(Comp Out) Suppose that $P' = M(N).P$ and $Q' = M(N).Q$, with $P \equiv Q$. We have that there exist an agent A and a process P'' such that $M(\sigma(N))P \parallel R \xrightarrow{\tau}^{*} P''$ and $P'' \xrightarrow{\beta} A$. By examining the definition of the commitment relation, we distinguish three cases:

- If $M(\sigma)$ is β then $Q' \sigma \parallel R \xrightarrow{\beta} ((\nu)\langle N \sigma \rangle Q \sigma) \parallel R$, so we let Q'' be simply $Q' \sigma \parallel R$ and B be $((\nu)\langle N \sigma \rangle Q \sigma) \parallel R$.
- If $R \xrightarrow{\tau}^{*} R'$ and $R' \xrightarrow{\beta} A'$ for some R' and A', then we let Q'' be $Q' \sigma \parallel R'$ and B be $Q' \sigma \parallel A'$.
- Otherwise, for some R', we have that $R \xrightarrow{\tau}^{*} R'$, R' has the commitment $R' \xrightarrow{M(\sigma)} (x)R''$ for some abstraction $(x)R''$, and $P \sigma \parallel R''[N \sigma / x] \xrightarrow{\tau}^{*} P''$. By Proposition 4, this implies that $P \sigma$ passes the test $R''[N \sigma / x]$. Therefore, since $P \equiv Q$, we obtain that $Q \sigma$ passes the test $R''[N \sigma / x]$. By Proposition 4, there exist Q'' and B such that $Q' \sigma \parallel R''[N \sigma / x] \xrightarrow{\tau}^{*} Q''$ and $Q'' \xrightarrow{\beta} B$. Finally, $R \xrightarrow{\tau}^{*} R'$, $R' \xrightarrow{M(\sigma)} (x)R''$, and $Q' \sigma \parallel R''[N \sigma / x] \xrightarrow{\tau}^{*} Q''$ imply that $Q' \sigma \parallel R \xrightarrow{\tau}^{*} Q''$.

(Comp In) Suppose that $P' = M(x).P$ and $Q' = M(x).Q$, with $P \equiv Q$. Without loss of generality, we assume that $\sigma(x)$ is not defined. We have that there exist an agent A and a process P'' such that $M(\sigma(x))P \parallel R \xrightarrow{\tau}^{*} P''$ and $P'' \xrightarrow{\beta} A$. By examining the definition of the commitment relation, we distinguish three cases:

- If $M(\sigma)$ is β then $Q' \sigma \parallel R \xrightarrow{\beta} ((\nu)\langle x \sigma \rangle Q \sigma) \parallel R$, so we let Q'' be simply $Q' \sigma \parallel R$ and B be $((\nu)\langle x \sigma \rangle Q \sigma) \parallel R$.
- If $R \xrightarrow{\tau}^{*} R'$ and $R' \xrightarrow{\beta} A'$ for some R' and A', then we let Q'' be $Q' \sigma \parallel R'$ and B be $Q' \sigma \parallel A'$.
- Otherwise, for some R', we have that $R \xrightarrow{\tau}^{*} R'$, R' has the commitment $R' \xrightarrow{M(\sigma)} (\nu m_1) \cdots (\nu m_k)\langle N \rangle R''$ for some concretion.
Suppose that $P'' = (vm_1)\cdots (vm_k)(N)R''$, and $(vm_1)\cdots (vm_k)(P\sigma[N/x] \mid R'' \overset{\tau}{\to}^*) P''$. By Lemma 31(3), P'' has the form $(vm_1)\cdots (vm_k)P''$ for some P'' such that $P\sigma[N/x] \mid R'' \overset{\tau}{\to}^* P''$; and by Proposition 2 and Lemma 31(4), $P'' \downarrow \beta$ with $\beta \notin \{m_1, \overline{m}_1, \ldots, m_k, \overline{m}_k\}$.

By Proposition 4, this implies that $P\sigma[N/x] \mid R'' \overset{\tau}{\to}^* P''$ and $\gamma \vdash \beta$. We let Q'' be $(vm_1)\cdots (vm_k)Q''$, obtaining $(vm_1)\cdots (vm_k)((Q\sigma[N/x] \mid R'') \overset{\tau}{\to}^* Q'' \overset{\gamma}{\to} B')$. Finally, $R \overset{\tau}{\to}^* R', R' \overset{M}{\overrightarrow{\gamma}} (vm_1)\cdots (vm_k)(N)R''$, and $(vm_1)\cdots (vm_k)(Q\sigma[N/x] \mid R'') \overset{\tau}{\to}^* Q''$ imply that $Q'\sigma \mid R \overset{\tau}{\to}^* Q''$.

(Comp Par) Suppose that $P' = P_1 \mid P_2$ and $Q' = Q_1 \mid Q_2$, with $P_1 \sqsubseteq Q_1$ and $P_2 \sqsubseteq Q_2$. If $P'\sigma$ passes (R, β), then $P_1\sigma$ passes $(P_2\sigma \mid R, \beta)$. Since $P_1 \sqsubseteq Q_1$, we obtain that $Q_1\sigma$ passes ($P_2\sigma \mid R, \beta$). Equivalently, we have that $P_2\sigma$ passes ($Q_1\sigma \mid R, \beta$). Since $P_2 \sqsubseteq Q_2$, we obtain that $Q_2\sigma$ passes ($Q_1\sigma \mid R, \beta$). Therefore, $Q'\sigma$ passes (R, β).

(Comp Res) Suppose that $P' = (\nu n)P$ and $Q' = (\nu n)Q$, with $P \sqsubseteq Q$. We may assume that the bound name n does not occur free in R, so that $P'\sigma \mid R \equiv (\nu n)(P\sigma \mid R)$. Since $P'\sigma$ passes (R, β), $(\nu n)(P\sigma \mid R) \downarrow \beta$. By Lemma 31(1), it follows that $(\nu n)(P\sigma \mid R) \downarrow \beta$. By Lemma 31(5), it follows that $P\sigma \mid R \downarrow \beta$ and that $\beta \notin \{n, \overline{n}\}$. From $P \sqsubseteq Q$, we obtain $Q\sigma \mid R \downarrow \beta$. By Lemma 31(5), it follows that $(\nu n)(Q\sigma \mid R) \downarrow \beta$. By Lemma 31(1), we conclude that $Q'\sigma \mid R \downarrow \beta$. Therefore, $Q'\sigma$ passes (R, β).

(Comp Repl) Suppose that $P' = !P$ and $Q' = !Q$, with $P \sqsubseteq Q$. We have $!P\sigma \mid R \downarrow \beta$. By Lemma 28, there is n such that $(\Pi_{i \in 1..n} P\sigma) \mid R \downarrow \beta$. Much as in the case of (Comp Par), it follows that $(\Pi_{i \in 1..n} Q\sigma) \mid R \downarrow \beta$. By Lemma 31(2), we obtain $!Q\sigma \mid (\Pi_{i \in 1..n} Q\sigma) \mid R \downarrow \beta$. Since $!Q\sigma \mid (\Pi_{i \in 1..n} Q\sigma) \mid R \equiv !Q\sigma \mid R$, we conclude that $!Q\sigma \mid R \downarrow \beta$ by Lemma 31(1), so $Q'\sigma$ passes (R, β).

(Comp Match) Suppose that $P' = [M is N]P$ and $Q' = [M is N]Q$, with $P \sqsubseteq Q$. If $M\sigma$ and $N\sigma$ are equal, then $P'\sigma \equiv P\sigma$ and $Q'\sigma \equiv Q\sigma$, and the result follows from Lemma 32 and the assumption that $P \sqsubseteq Q$. Otherwise, both $P\sigma$ and $Q'\sigma$ are stuck, and hence they are
barbed congruent to \(0 \) by Proposition 8; by Proposition 7, it follows that \(P' \sigma \simeq Q' \sigma \).

(Comp Nil) Suppose that \(P' = 0 \) and \(Q' = 0 \). Since \(\simeq \) is reflexive, \(P' \sigma \simeq Q' \sigma \), and hence \(P' \equiv^0 Q' \).

(Comp Decrypt) Finally, suppose that \(P' = \text{case } N \text{ of } \{ x \}_M \) in \(P \) and \(Q' = \text{case } N \text{ of } \{ x \}_M \) in \(Q \), with \(P \equiv^0 Q \). Without loss of generality, we assume that \(\sigma(x) \) is not defined. If \(N \sigma \) is \(\{ N' \}_M \), then \(P' \sigma \equiv P[\sigma[N'/x]] \) and \(Q' \sigma \equiv Q[\sigma[N'/x]] \), and the result follows from Lemma 32 and the assumption that \(P \equiv^0 Q \). Otherwise, both \(P' \sigma \) and \(Q' \sigma \) are stuck, and hence they are barbed congruent to \(0 \) by Proposition 8; by Proposition 7, it follows that \(P' \sigma \simeq Q' \sigma \).

The other cases—(Comp Split) and (Comp IntCase)—are similar. \(\Box \)

We obtain:

Proof of Proposition 1

1. *Structural equivalence implies testing equivalence.*

2. *Testing equivalence is reflexive, transitive, and symmetric.*

3. *Testing equivalence is a congruence on closed processes.*

Proof That structural equivalence implies testing equivalence is said in Lemma 32. Whenever \(S \) is a relation on closed processes and \(S^\circ \) is a congruence on open processes, \(S \) is a congruence on closed processes. \(\Box \)

The remainder of this section concerns some testing equivalences that we use in reasoning about protocols.

Proposition 35 For any closed process \(P \), \(P \simeq \tau.P \).

Proof First we show that \(P \sqsubseteq \tau.P \). By Proposition 4, if \(P \) passes a test \((R, \beta) \) there is \(Q \) such that \(P \mid R \xrightarrow{*} Q \) and \(Q \downarrow \beta \). By induction on the length of the computation \(P \mid R \xrightarrow{*} Q \), we can show that there is \(Q' \) such that there is a computation \(\tau.P \mid R \xrightarrow{*} Q' \) with \(Q' \downarrow \beta \). Hence \(\tau.P \) passes the test \((R, \beta) \). Roughly speaking, the second computation is a copy of the first, except that if ever \(P \) contributes to the first (by itself or by reacting with \(R \)) then we can include \(\tau.P \xrightarrow{\tau} P \) in the second computation, and then proceed as in the first computation.

By a similar argument \(\tau.P \sqsubseteq P \), and hence \(P \simeq \tau.P \). \(\Box \)
Lemma 36 For any P with $fv(P) \subseteq \{x\}$ and any distinct names m and n, $m(x),(vn)P \simeq (vn)m(x),P$.

Proof Since both $m(x),(vn)P$ and $(vn)m(x),P$ have each just one commitment, to the same abstraction:

$$m(x),(vn)P \xrightarrow{m} (x)(vn)P$$

$$ (vn)m(x),P \xrightarrow{m} (vn)(x)P = (x)(vn)P$$

they are strongly bisimilar, hence testing equivalent by Proposition 7. \qed

Lemma 37 Let n be a name, M a (possibly open) term, $\{N_i \mid i \in I\}$ a set of distinct closed terms, and $\{P_i \mid i \in I\}$ a set of (possibly open) processes, where I is a finite set of indices. Then $\prod_{i \in I}[M is N_i](vn)P_i \simeq^\circ (vn)\prod_{i \in I}[M is N_i]P_i$.

Proof According to the definition of \simeq°, it suffices to consider all substitution instances of the claimed equivalence. So we show that, taking all terms and processes to be closed, $\prod_{i \in I}[M is N_i](vn)P_i \simeq (vn)\prod_{i \in I}[M is N_i]P_i$.

For each $i \in I$, if $N_i \neq M$ then $[M is N_i]P_i \simeq 0$ and $[M is N_i](vn)P_i \simeq 0$ by Propositions 8 and 7. For $N_i = M$, on the other hand, $[M is N_i]P_i \simeq P_i$ and $[M is N_i](vn)P_i \simeq (vn)P_i$ by Proposition 1. Thus, both $(vn)\prod_{i \in I}[M is N_i]P_i$ and $\prod_{i \in I}[M is N_i](vn)P_i$ are testing equivalent to 0 if $M \notin \{N_i \mid i \in I\}$ and to $(vn)P_i$ if $N_i = M$. \qed

D.2 Barbed Equivalence

Proof of Proposition 5

(1) Barbed equivalence is reflexive, transitive, and symmetric.

(2) Strong bisimilarity implies barbed equivalence.

(3) Structural equivalence implies barbed equivalence.

(4) Barbed equivalence is preserved by restriction.

Proof

(1) As usual, we can show that the identity relation is a barbed bisimulation, that the composition of two barbed bisimulations yields a barbed bisimulation, and that the converse of a barbed bisimulation is a barbed bisimulation.
(2) It is enough to show that strong bisimilarity is a barbed bisimulation. Given Propositions 2 and 3 this is easy.

(3) By Lemma 25, structural equivalence is a strong bisimulation. By part (2), it is contained in barbed equivalence.

(4) It suffices to show that \{((\nu n)P, (\nu n)Q) \mid P \sim Q\} is a barbed bisimulation. The proof is straightforward. \(\Box\)

Proof of Proposition 6 If \(S\) is a barbed bisimulation up to \(\sim\) and restriction, then \(S \subseteq \sim\). A fortiori, if \(S\) is a barbed bisimulation up to \(\sim\), then \(S \subseteq \sim\).

Proof We prove the proposition using a generalisation of the standard technique [MPW92]; an alternative would be to use the modular framework recently developed by Sangiorgi [San94].

We construct a relation \(S^*\) larger than \(S\) and show that \(S^*\) is a barbed bisimulation. The relation \(S^*\) is defined by:

\[
S_0 = S \\
S_{k+1} = \{(\nu m)P, (\nu m)Q) \mid P \sim S_k \sim Q, m \text{ is any name}\} \\
S^* = \bigcup_{k<\omega} (\sim S_k\sim)
\]

First we observe that \(S^*\) enjoys the following properties:

<table>
<thead>
<tr>
<th>(Star (S))</th>
<th>(Star Res)</th>
<th>(Star (\sim))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P S Q)</td>
<td>(P S^* Q)</td>
<td>(P \sim S^* \sim Q)</td>
</tr>
<tr>
<td>(P S^* Q)</td>
<td>((\nu m)P S^* (\nu m)Q)</td>
<td>(P S^* Q)</td>
</tr>
</tbody>
</table>

Property (Star \(S\)) follows easily from the definition of \(S^*\) (and the reflexivity of \(\sim\)). Property (Star Res) holds because \(P S^* Q\) implies \(P \sim S_k \sim Q\) for some \(k\) and, for every \(k\), \(P \sim S_k \sim Q\) implies \((\nu m)P \sim S_{k+1} \sim (\nu m)Q\) which in turn implies \((\nu m)P S^* (\nu m)Q\). Property (Star \(\sim\)) holds because \(P \sim S^* \sim Q\) implies that, for some \(k\), \(P \sim P_0 \sim S_k \sim Q_0 \sim Q\) and (by the transitivity of \(\sim\)) \(P \sim S_k \sim Q\), and hence \(P S^* Q\).

In order to establish that \(S^*\) is a barbed bisimulation, we prove by induction on \(k\) that \(P \sim S_k \sim Q\) implies:

1. for each barb \(\beta\), if \(P \downarrow \beta\) then \(Q \downarrow \beta\), and
(2) if \(P \rightarrow P' \) then there exists \(Q' \) such that \(Q \rightarrow Q' \) and \(P' \overset{\mathcal{S}^*}{\sim} Q' \).

In the base case, \(k = 0 \), we have \(P \sim P_0 \overset{\mathcal{S}}{\sim} Q_0 \sim Q \).

(1) Suppose that \(P \Downarrow \beta \). Since \(P \sim P_0 \), \(P_0 \Downarrow \beta \). Since \(P_0 \overset{\mathcal{S}}{\sim} Q_0 \), \(Q_0 \Downarrow \beta \), by definition of a barbed bisimulation up to \(\sim \) and restriction. Finally, since \(Q_0 \sim Q \), \(Q \Downarrow \beta \) too.

(2) Suppose that \(P \rightarrow P' \). Since \(P \sim P_0 \), there is \(P'_0 \) such that \(P_0 \rightarrow P'_0 \) and \(P' \sim P'_0 \). Since \(P_0 \overset{\mathcal{S}}{\sim} Q_0 \), by definition of a barbed bisimulation up to \(\sim \) and restriction, there is \(Q'_0 \) such that \(Q_0 \rightarrow Q'_0 \), and there are \(P'' \), \(Q'' \), and names \(\bar{n} \) such that \(P'_0 \sim (\nu \bar{n})P'' \), \(Q'_0 \sim (\nu \bar{n})Q'' \), and \(P'' \overset{\mathcal{S}}{\sim} Q'' \). By \(\text{(Star } \mathcal{S}) \), \(P'' \overset{\mathcal{S}}{\sim} Q'' \). By \(\text{(Star Res)} \), \((\nu \bar{n})P'' \overset{\mathcal{S}}{\sim} (\nu \bar{n})Q'' \). By \(\text{(Star } \sim) \), \(P'_0 \overset{\mathcal{S}}{\sim} Q'_0 \). Since \(Q_0 \sim Q \), there is \(Q' \) such that \(Q \rightarrow Q' \) and \(Q'_0 \sim Q' \). Finally, given \(P' \sim P'_0 \), \(P'_0 \overset{\mathcal{S}}{\sim} Q'_0 \), and \(Q'_0 \sim Q' \), we obtain \(P' \overset{\mathcal{S}}{\sim} Q' \) by \(\text{(Star } \sim) \).

In the inductive case, we have \(P \overset{\mathcal{S}_{k+1}}{\sim} Q \), so there exist \(m \), \(P_0 \), and \(Q_0 \) such that \(P \sim (\nu m)P_0 \), \(P_0 \overset{\mathcal{S}}{\sim} Q_0 \), and \((\nu m)Q_0 \sim Q \).

(1) Suppose that \(P \Downarrow \beta \). Since \(P \sim (\nu m)P_0 \), \((\nu m)P_0 \Downarrow \beta \). Therefore \(P_0 \Downarrow \beta \) and \(\beta \notin \{m, \overline{m}\} \). By induction hypothesis, \(P_0 \overset{\mathcal{S}}{\sim} Q_0 \) implies that \(Q_0 \Downarrow \beta \). Since \(\beta \notin \{m, \overline{m}\} \), \((\nu m)Q_0 \Downarrow \beta \). Finally, since \((\nu m)Q_0 \sim Q \), \(Q \Downarrow \beta \) too.

(2) Suppose that \(P \rightarrow P' \). Since \(P \sim (\nu m)P_0 \), there is \(P'_1 \) such that \((\nu m)P_0 \rightarrow P'_1 \) and \(P' \sim P'_1 \). By Lemma 31(3) and Proposition 3, there is \(P'_0 \) such that \(P'_1 \equiv (\nu m)P'_0 \) and \(P_0 \rightarrow P'_0 \). By induction hypothesis, there is \(Q'_0 \) such that \(Q_0 \rightarrow Q'_0 \) and \(P'_0 \overset{\mathcal{S}}{\sim} Q'_0 \). By \(\text{(React Res)} \), \((\nu m)Q_0 \rightarrow (\nu m)Q'_0 \). Since \((\nu m)Q_0 \sim Q \), there is \(Q' \) such that \(Q \rightarrow Q' \) and \((\nu m)Q'_0 \sim Q' \). By \(\text{(Star Res)} \), \((\nu m)P'_0 \overset{\mathcal{S}}{\sim} (\nu m)Q'_0 \). Finally, given \(P' \sim (\nu m)P'_0 \), \((\nu m)P'_0 \overset{\mathcal{S}}{\sim} (\nu m)Q'_0 \), and \((\nu m)Q'_0 \sim Q' \), we obtain \(P' \overset{\mathcal{S}}{\sim} Q' \) by \(\text{(Star } \sim) \).

This completes the proof by induction. The definition of \(\mathcal{S}^* \) yields that \(\mathcal{S}^* \) is a barbed bisimulation, so \(\mathcal{S}^* \subseteq \sim \). Using \(\text{(Star } \mathcal{S}) \), we conclude that \(\mathcal{S} \subseteq \sim \). □
D.3 Barbed Congruence

The main task of this section is to show $\sim^0 \subseteq \sim^0$, from which it follows that \sim^0 is a congruence. The following is an adaptation of the proof by Pierce and Sangiorgi [PS93].

We begin with two lemmas concerning replication and commitment.

Lemma 38 $\sim^0 \subseteq \sim^0$.

Proof For any P' and Q', we need to show that $P' \sim^0 Q'$ implies that

$$P'\sigma \mid R \sim Q'\sigma \mid R$$

(21)

for any closed R and substitution σ, with $fv(P') \cup fv(Q') \subseteq dom(\sigma)$. We do so by an analysis of the (Comp $-$) rule used to derive $P' \sim^0 Q'$.

(Comp Out) Here $P' = M(N).P$ and $Q' = M(N).Q$, with $P \sim^0 Q$. So $P'\sigma = M\sigma(N\sigma).P\sigma$ and $Q'\sigma = M\sigma(N\sigma).Q\sigma$. Let S be the following relation:

$$S = \{(P'\sigma \mid R, Q'\sigma \mid R) \mid any\ R\}$$

Equation (21) will follow if we can show that $S \cup \sim$ is a barbed bisimulation. Clearly both $P'\sigma \mid R$ and $Q'\sigma \mid R$ have the same barbs. By using the rules of commitment, we can see that if $P'\sigma \mid R$ has a τ commitment, either R has one by itself or there is an interaction between $M\sigma(N\sigma).P\sigma$ and R. In either case $Q'\sigma \mid R$ can match this τ commitment, via S and \sim respectively.

(Comp In) Here $P' = M(x).P$ and $Q' = M(x).Q$, with $P \sim^0 Q$. So $P'\sigma = M\sigma(x).P\sigma$ and $Q'\sigma = M\sigma(x).Q\sigma$; since x is bound we may assume that $x \notin dom(\sigma)$. As in the previous case, if we set $S = \{(P'\sigma \mid R, Q'\sigma \mid R) \mid any\ R\}$, it is enough to show that $S \cup \sim$ is a barbed bisimulation, and this follows by a similar argument.

(Comp Par) Here $P' = P_1 \mid P_2$ and $Q' = Q_1 \mid Q_2$. Using assumptions that $P_1 \sim^0 Q_1$ and $P_2 \sim^0 Q_2$, and the properties of barbed equivalence in Proposition 5, we can calculate equation (21) as follows.

$$(P_1\sigma \mid P_2\sigma) \mid R \equiv P_1\sigma \mid (P_2\sigma \mid R) \sim Q_1\sigma \mid (P_2\sigma \mid R) \equiv P_2\sigma \mid (Q_1\sigma \mid R) \sim Q_2\sigma \mid (Q_1\sigma \mid R) \equiv (Q_1\sigma \mid Q_2\sigma) \mid R$$
(Comp Res) Here $P' = (\nu n)P$ and $Q' = (\nu n)Q$. Using the assumption that $P \sim Q$, together with Proposition 5, here is a calculation of equation (21).

$$((\nu n)(P \sigma)) \mid R \equiv (\nu n)(P \sigma \mid R) \sim (\nu n)(Q \sigma \mid R) \equiv ((\nu n)(Q \sigma)) \mid R$$

(Comp Repl) Here $P' = !P$ and $Q' = !Q$ with $P \sim Q$. We prove that

$$S = \{(!P \sigma \mid R, !Q \sigma \mid R) \mid \text{any } R\}$$

is a barbed bisimulation up to \sim. Hence equation (21) will follow by Proposition 6. Clearly both sides have the same barbs. Consider any reaction $!P \sigma \mid R \rightarrow R'$.

By Lemma 27, there is a process R'' with reaction $P \sigma \mid P \sigma \mid R \rightarrow R''$, such that $R'' \equiv !P \sigma \mid R''$. By assumption $P \sim Q$, we can calculate the following.

$$!Q \sigma \mid R \equiv Q \sigma \mid (!Q \sigma \mid R) \sim P \sigma \mid (!Q \sigma \mid P \sigma \mid R) \equiv Q \sigma \mid (!Q \sigma \mid P \sigma \mid R) \sim P \sigma \mid (!Q \sigma \mid P \sigma \mid R) \equiv !Q \sigma \mid P \sigma \mid P \sigma \mid R \rightarrow !Q \sigma \mid R''$$

By the definition of \sim, there must be a reaction $!Q \sigma \mid R \rightarrow Q''$ with $Q'' \sim !Q \sigma \mid R''$. Moreover we have $R'' \equiv !P \sigma \mid R'' S \mid Q \sigma \mid R'' \sim Q''$, so we have satisfied the condition for S to be a bisimulation up to \sim.

(Comp Match) Here $P' = [M is N] P$ and $Q' = [M is N] Q$ with $P \sim Q$. Let $S = \{([M \sigma is N \sigma] P \sigma \mid R, [M \sigma is N \sigma] Q \sigma \mid R) \mid \text{any } R\}$. Then equation (21) follows easily by showing that $S \cup \sim$ is a barbed bisimulation.

(Comp Decrypt) Here $P' = case N of \{x\}_M in P$ and $Q' = case N of \{x\}_M in Q$ with $P \sim Q$. Since x is bound, we may assume $x \notin dom(\sigma)$, and therefore that $P' \sigma = case N of \{x\}_M in P \sigma$ and $Q' \sigma = case N of \{x\}_M in Q \sigma$. Let $S = \{(P' \sigma \mid R, Q' \sigma \mid R) \mid \text{any } R\}$. Again, it is easy to see that $S \cup \sim$ is a barbed bisimulation, and hence that equation (21) holds.
The other cases—(Comp Nil), (Comp Split), and (Comp IntCase)—are similar. □

Now we can prove the basic facts about barbed congruence claimed in Section 5.2.3.

Proof of Proposition 7

(1) Barbed congruence is reflexive, transitive, and symmetric.

(2) Barbed congruence is a congruence on closed processes.

(3) Structural equivalence implies barbed congruence.

(4) Strong bisimilarity implies barbed congruence.

(5) Barbed congruence implies testing equivalence.

Proof

(1) Since ≃ is an equivalence relation, so is ∼.

(2) Lemma 38 yields that the open extension of barbed congruence, ∼⃝, is a congruence on open processes. It follows that barbed congruence is a congruence on closed processes.

(3) This follows from part (4), since we know from Lemma 25 that structural equivalence implies strong bisimilarity.

(4) It suffices to check that the following relation is a barbed bisimulation:

\[\mathcal{S} = \{(P | R, Q | R) \mid P \text{ and } Q \text{ strongly bisimilar}\} \]

We omit the routine proof, which involves using the commitment relation to analyse the possible barbs and reactions of \(P | R \) and \(Q | R \), and showing that they match up to \(\mathcal{S} \).

(5) Suppose that \(P \sim Q \), and consider any test \((R, \beta)\). By definition of barbed congruence, \((P | R) \sim (Q | R)\). Hence, \((P | R) \Downarrow \beta\) implies \((Q | R) \Downarrow \beta\) too. Therefore, \(P \sim Q \). □
E Proofs about Underpinning

First, we need the following fact about underpinning and injective substitutions.

Lemma 39 Suppose $E \vdash M$, $E \vdash N$, and $E \vdash \sigma$. If σ is injective, then $M\sigma = N\sigma$ implies $M = N$.

Proof By induction on the structure of M.

- Suppose M is the variable x. Since $E \vdash x$, $x \in \text{dom}(\sigma)$. Since $E \vdash \sigma$, $x\sigma$ must be a ciphertext, say $\{M'\}_K$, with $K \in \text{keys}(E)$. Since $E \vdash N$, $K \notin fn(N)$. Since $N\sigma = \{M'\}_K$, it must be that N is a variable y, with $y \in \text{dom}(\sigma)$ and $y\sigma = x\sigma$. Since σ is injective, $x = y$, that is, $M = N$.

- Suppose M is the name n. The set of names is defined to be distinct from the set of variables, so $M\sigma = n$. Similarly, since $N\sigma = n$, it follows that $N = n$ and therefore that $M = N$.

- Suppose M is the ciphertext $\{M_1\}_{M_2}$. Therefore $M\sigma = \{M_1\sigma\}_{M_2\sigma} = N\sigma$. Either N is some variable $x \in \text{dom}(\sigma)$ or $N = \{N_1\}_{N_2}$. If the latter, we have $E \vdash M_i$, $E \vdash N_i$, $M_i\sigma = N_i\sigma$ for $i = 1, 2$. By induction hypothesis, $N_i = N_i$ for $i = 1, 2$, and therefore $M = N$ as required.

 Otherwise, if $N = x$, suppose that $x\sigma$ is the ciphertext $\{N'\}_K$. Since $M\sigma = N\sigma$, $M_2\sigma = K$ and moreover $M_2 = K$. Since $E \vdash \sigma$, $K \in \text{keys}(E)$. Since $E \vdash M$, $K \notin fn(M)$ but $M = \{M_1\}_K$. This is a contradiction.

- Suppose M is the pair (M_1, M_2). From $(M_1\sigma, M_2\sigma) = N\sigma$ it must be that $N = (N_1, N_2)$, since the range of σ includes only ciphertexts. As in the previous case, we have $E \vdash M_i$, $E \vdash N_i$, $M_i\sigma = N_i\sigma$ for $i = 1, 2$. By induction hypothesis, $N_i = N_i$ for $i = 1, 2$, and therefore $M = N$ as required.

The other cases, when $M = 0$ and $M = suc(M')$, are similar. \qed

Proof of Lemma 9 Suppose that $E \vdash P$ and $E \vdash \sigma$, and that σ is injective.
Proof

(1) By analysis of the rules that may yield $P \sigma > Q'$.

(Red Decrypt) Here $P = \text{case } M \text{ of } \{x\} \approx N \text{ in } R$ with $M \sigma = \{M'_1\}_{N \sigma}$ and $Q' = R \sigma[M'_1/x]$, given that we may assume that bound variable x is not in the domain or range of σ. Since $M \sigma = \{M'_1\}_{N \sigma}$, either M is a variable $y \in \text{dom} \sigma$ or a ciphertext $\{M_1\}_{M_2}$.

In the former case, $y \sigma = \{M'_1\}_{N \sigma}$ so $N \sigma$ must be a member of $\text{keys} \sigma(E)$ and therefore is a name, say K. Since the range of σ consists of ciphertexts, N itself must be the name K. But then we have $K \in \text{keys} \sigma(E)$ while also $K \in \text{fn} \sigma(P)$, which contradicts our assumption that $E \vdash P$.

Therefore $M = \{M_1\}_{M_2}$. It follows that $M_1 \sigma = M'_1$ and $M_2 \sigma = N \sigma$. By Lemma 39, $M_2 = N$. Let $Q = R[M_1/x]$. From $E \vdash P$ it follows that $E \vdash Q$ too. Further, $\text{fn} \sigma(Q) \subseteq \text{fn} \sigma(M_1) \cup \text{fn} \sigma(R) \subseteq \text{fn} \sigma(P)$. For any injective σ' with $E \vdash \sigma'$, we have:

$$P \sigma' = \text{case } \{M_1 \sigma'\}_{N \sigma'} \text{ of } \{x\} \approx N \sigma' \text{ in } R \sigma'$$

$$> R \sigma'[M_1 \sigma'/x]$$

$$= (R[M_1/x]) \sigma'$$

So we have $P \sigma' > Q \sigma'$ as required.

(Red Match) Here $P = [N_1 \approx N_2] Q$ with $N_1 \sigma = N_2 \sigma$ and $Q' = Q \sigma$.

By Lemma 39, $N_1 = N_2$. From $E \vdash P$ it follows that $E \vdash Q$ too. Since Q is a part of P, $\text{fn} \sigma(Q) \subseteq \text{fn} \sigma(P)$ and $\text{fn} \sigma(Q) \subseteq \text{fn} \sigma(P)$. For any injective σ' with $E \vdash \sigma'$, we have $P \sigma' = [N_1 \sigma' \approx N_2 \sigma'] Q \sigma' > Q \sigma'$ as required.

The other cases are routine, given that M must be a ciphertext if it is in the range of σ.

109
By induction on the derivation of $P\sigma \xrightarrow{\sigma} A'$.

(Comm In) Here $P = M(x)\cdot Q$ with $M\sigma = m = \alpha$ and $A' = (x)(Q\sigma)$, where we may assume that bound variable x is not in the domain or range of σ. Since $M\sigma$ is a name, m must be that M itself is the name, since only ciphertexts are in the range of σ. Let $A = (x)Q$. From $E \vdash P$ it follows that $E \vdash A$ too. Further, $fv(A) = fv(Q) = \{x\} \subseteq fn(P)$ and $fn(A) = fn(Q) \subseteq fn(P)$. We have $A' = (x)(Q\sigma) = A\sigma$. For any injective σ' with $E \vdash \sigma'$, we have:

$$P\sigma' = m(x), Q\sigma' \xrightarrow{\sigma} (x)(Q\sigma') = A\sigma'$$

as required.

(Comm Inter 1) Here $P = P_1 \upharpoonright P_2$, with $P_1 \sigma \xrightarrow{m} F'$ and $P_2 \sigma \xrightarrow{\tau} C'$, $\alpha = \tau$, and $A' = F'\circ C'$. By induction hypothesis, there is F such that $F' = F\sigma$, $E \vdash F$, $fv(F) \subseteq fv(P_1)$, $fn(F) \subseteq fn(P_1)$, and $P_1 \sigma' \xrightarrow{m} F\sigma'$ for all injective σ' with $E \vdash \sigma'$. By induction hypothesis, there is C such that $C' = C\sigma$, $E \vdash C$, $fv(C) \subseteq fv(P_2)$, $fn(C) \subseteq fn(P_2)$, and $P_2 \sigma' \xrightarrow{\tau} C\sigma'$ for all injective σ' with $E \vdash \sigma'$. Let $A = F\circ C$. Interaction, \circ, is defined so that it commutes with substitution, so we have $A\sigma = F\sigma\circ C\sigma = F'\circ C' = A'$. From $E \vdash F$ and $E \vdash C$ follows $E \vdash A$. Further, $fv(A) \subseteq fv(F) \cup fv(C) \subseteq fv(P_1) \cup fv(P_2) = fv(P)$ and $fn(A) = fn(F) \cup fn(C) \subseteq fn(P_1) \cup fn(P_2) = fn(P)$. For any injective σ' with $E \vdash \sigma'$, we have:

$$P\sigma' = P_1 \sigma' \upharpoonright P_2 \sigma' \xrightarrow{\tau} F\sigma' \circ C\sigma' = (F\circ C)\sigma'$$

where the τ commitment follows using (Comm Inter 1) and the facts that $P_1 \sigma' \xrightarrow{m} F\sigma'$ and $P_2 \sigma' \xrightarrow{\tau} C\sigma'$. We have obtained $P\sigma' \xrightarrow{\circ} A\sigma'$, as required.

(Comm Red) Here $P\sigma > Q'$ and $Q' \xrightarrow{\sigma} A'$. By part (1), there is Q with $E \vdash Q$, $fv(Q) \subseteq fv(P)$, $fn(Q) \subseteq fn(P)$, $Q' = Q\sigma$, and $P\sigma' > Q\sigma'$ for all injective σ' with $E \vdash \sigma'$. Since $E \vdash Q$ and $Q\sigma \xrightarrow{\sigma} A'$, by induction hypothesis, there is A with $E \vdash A$, $fv(A) \subseteq fv(Q)$, $fn(A) \subseteq fn(Q)$, $A' = A\sigma$, and $Q\sigma' \xrightarrow{\sigma} A\sigma'$ for all such σ'.
transitivity, we have $f_v(A) \subseteq f_v(P)$ and $f_n(A) \subseteq f_n(P)$. Further, for any injective σ' with $E \vdash \sigma'$, we have obtained $P\sigma' \triangleright Q\sigma'$ and $Q\sigma' \xrightarrow{\sigma} A\sigma'$, so by (Comm Red) $P\sigma \xrightarrow{\sigma} A\sigma'$, as required.

The case for (Comm Out) is similar to that for (Comm In). The case for (Comm Inter 2) is like that for (Comm Inter 1). Those for (Comm Par 1), (Comm Par 2), and (Comm Res) are by simple uses of the induction hypothesis.

This lemma would still hold in a spi calculus with the mismatch operator mentioned in Section 4.2. The case for mismatch in part 1 would be like that of (Red Match), with a similar appeal to Lemma 39.
References

