Detecting Energy Hot Spots: Experiences with the iPAQ Pocket PC

Fay Chang
Keith Farkas
Parthasarathy Ranganathan
The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate Research group. WRL was founded by Digital Equipment Corporation in 1982. We focus on information technology that is relevant to the technical strategy of the Corporation, and that has the potential to open new business opportunities. Research at WRL includes Internet protocol design and implementation, tools to optimize compiled binary code files, hardware and software mechanisms to support scalable shared memory, graphics VLSI ICs, handheld computing, and more. As part of WRL tradition, we test our ideas by extensive software or hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports, and technical notes. This document is a technical note. We use technical notes for rapid distribution of technical material; usually this represents research in progress. Research reports are normally accounts of completed research and may include material from earlier technical notes, conference papers, or magazine articles.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.compaq.com/wrl/

You can contact us about research reports and technical notes by sending e-mail to:

WRL-techreports@research.compaq.com
1 Introduction

Energy is a critical resource for many computing systems, spurring the desire for energy-efficient software. To build such software, developers need to understand the energy impact of their software design decisions. Currently, when developers reason about such decisions, they tend to rely on intuition. However, intuition can be misleading because most developers do not internalize an accurate model of the energy cost of different operations, or properly account for the relative frequency of the operations that take place.

In this report, we describe a tool that can help developers quickly determine the energy impact of their design decisions. In particular, using our tool, a developer can quickly obtain a wealth of information about the system's power and energy consumption while executing some software. For example, our tool can provide answers to questions like:

1. How does power consumption vary while executing the software?
2. What power states are exercised while executing the software, and how much energy is consumed in each of these power states?
3. Of the energy that is consumed, how much is consumed while executing each individual instruction, procedure, and application?

Our tool is based on statistical sampling. Statistical sampling tools introduce a periodic source of interrupts. Whenever such an interrupt is received by the system, the tool records a sample that contains information about the system's state, such as a timestamp and the program counter of the interrupted instruction. The samples gathered during a given time period can then be analyzed to produce estimates of the system's behavior during that time period.

Previous statistical sampling tools introduce sampling interrupts that are separated by a fixed amount of time, possibly with some small variation to diminish the risk of synchronization [1, 7, 8]. In contrast, our tool uses sampling interrupts that are separated by a fixed amount of energy consumption, which we refer to as the energy quanta. We refer to this approach as energy-driven statistical sampling (in contrast to previous time-driven statistical sampling approaches).
The samples collected during energy-driven statistical sampling can be analyzed in a variety of ways. First, the average power consumed by the system during some time period is equal to the product of the energy quanta and the interrupt frequency during that period. Using this relationship, we can extract information about the system's power consumption. Second, the amount of energy consumed while executing some software is estimated by the product of the energy quanta and the number of samples that are attributed to that software. Consequently, we can extract information about the system's energy consumption from the distribution of samples, i.e., the energy profile.

In this report, we illustrate the type of information that can be obtained from our tool using a prototype we built of the tool for an iPAQ handheld running PocketPC. We begin in the next section by comparing our tool to other approaches for obtaining this information. Then, we describe our prototype implementation with Section 3 covering the hardware and Section 4 the software. Results are then presented in Section 6 for an energy-consumption study of 14 benchmarks. Finally, we summarize our findings in Section 7, and present an analysis of the errors in our approach in Section A.

2 Other Tools

Energy-driven statistical sampling can be used to measure average power consumption and to obtain temporal profiles or histograms of power consumption. It can also be used to measure total energy consumption and extract energy profiles that attribute that energy consumption to the software executed during the sampling period. While there are other tools that can provide such information, we believe our tool offers several advantages.

First, a computer system's power usage could also be characterized using measurement equipment like digital meters or data acquisition systems. However, the accuracy provided by such measurement equipment would often be excessive, so that our tool is a better option owing to its much lower hardware cost and greater ease of use.

Second, there are several other tools that seek to assist developers in mapping energy consumption to software components. Most of these tools estimate energy consumption by multiplying activation counts for various activities (e.g., executing a particular type of instruction) with estimates of the energy consumed to perform each activity [2, 4, 9]. One advantage of this approach is that it can leverage activation counts for background activities to more easily attribute energy consumed asynchronously. However, an activation-based approach has the disadvantage of requiring system-specific knowledge about what activities should be counted, and system-specific estimates of the energy consumed to perform each such activity.

An alternate approach, PowerScope [8], uses time-driven statistical sampling but adjusts for incongruities between duration and energy consumption by including in each sample an estimate of the system's instantaneous power consumption. This feature allows PowerScope to weight each sample by its instantaneous power measurement to produce, as with our tool, an energy profile. However, we believe that our energy-driven approach is simpler to implement and while our tool and the PowerScope approach yield similar results for current-generation systems, we believe this equality will not necessarily hold for future-generation systems [3].
3 Hardware

In this section, we describe our hardware implementation of the energy-counter and the two iPAQ-based prototype systems that use it. Both of our prototypes are based on iPAQ units that had their Flash ROM capacity upgraded from 16 MB to 32 MB. Unit 1 is a production H3630 unit, while unit 2 is a pre-production H3600 unit.

3.1 Hardware Overview

Figure 1 presents a block diagram of our two prototypes. As shown, we replaced the battery of the iPAQ handheld with a power supply, and interposed an energy counter between the power supply and the iPAQ’s electronics. We used a power supply rather than the battery to simplify our experimental procedure and to ensure that the iPAQ's power efficiency stays constant during experiments; Section A.1.1 discusses the consequences of using a battery. The purpose of the energy counter is to generate an interrupt whenever a predetermined amount of energy has been consumed. The energy counter operates as follows.

As current i_s is drawn from the power supply by the iPAQ, a current mirror composed of a resistor and a current-sense amplifier generates a current $i_m = \alpha \times i_s$ (the value of α is given in column 3 of Table 1). This current i_m deposits charge on the positive plate of a capacitor, which acts as a current integrator. When the voltage across the capacitor plates reaches $\frac{2}{3}$ of the voltage (V_x) powering the monostable multivibrator this IC generates an output pulse P, and discharges the capacitor to a voltage of $\frac{V_x}{3}$. The capacitor then begins to accumulate charge again via i_m.

Each pulse P indicates that the capacitor (with capacitance C Farads) has accumulated Q_c Coulombs, where Q_c is given by Equation 1. During this time, the iPAQ will have consumed $Q_i = \frac{Q_c}{\alpha}$ Coulombs. The energy E_q consumed by the iPAQ during this time is merely the product of the charge and the essentially constant battery-terminal voltage V_b; Equation 2 derives this equivalence.

$$Q_c = \int_0^t i_m(t) \, dt = C \times \frac{V_x}{3}$$

$$E_q = Q_i = \frac{Q_c}{\alpha}$$
\[E_q = \int_0^t v_b(t) \times i_s(t) \, dt = Q_i \times \int_0^t v_b(t) \, dt = Q_i \times V_b \]

(2)

We refer to \(E_q \) as the minimum energy quanta. The minimum energy quanta in our prototypes is given in column 4 of Table 1.

Each pulse increments the value of a 12-bit binary counter. This counter allows the user to select the number of minimum energy quanta that must be consumed before an interrupt is generated. Specifically, if the iPAQ’s general purpose I/O line (GPIO) is connected to bit \(q \) of the counter, then an interrupt is generated once \(2^{(q+1)} \) quanta of energy have been consumed. We refer to this quantity as the energy quanta. The user must select the value of \(q \) manually.

3.2 Hardware Implementation Details

One of our design goals was to support profiling of the energy consumed by applications that use an 802.11b wireless radio. To this end, we designed the energy counter so that it would measure the current drawn by an iPAQ handheld and a PCMCIA sleeve. Figure 2 presents a picture of one of the two nearly-identical prototypes. The wiring diagram of the prototypes is shown in Figure 3(a); for ease of comparison with the block diagram of Figure 1, we have reproduced Figure 1 here as Figure 3(b).

As illustrated in Figure 3(a), we have added the current mirror to the flex that is used to convey power to the iPAQ handheld, while the rest of the energy-counter functionality is implemented by the energy-counter PCB. We also modified the PCMCIA sleeve so as to monitor its current consumption and to interface the energy-counter PCB to the iPAQ handheld.

We have removed the battery from both the iPAQ handheld and the PCMCIA sleeve, and replaced each with a piece of flex that contains a battery connector at one end, and power leads at the other (\(P_1 \) and \(P_3 \) in Figure 3(a)). With the iPAQ handheld, we then inserted the sense resistor \(R \) in series with the positive power lead (\(P_3 \)); Column 2 of Table 1 lists the value of the sense resistor for each prototype. To avoid measuring the current dissipated as heat in the fuse, we located \(R \) downstream of the fuse. With the PCMCIA sleeve, we shorted its fuse, and connected the positive power lead (\(P_3 \)) to

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Resistor</th>
<th>(\alpha)</th>
<th>Minimum Energy Quanta ((E_q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, upgraded H3630 unit</td>
<td>100 m(\Omega)</td>
<td>0.001</td>
<td>46 (\mu)J</td>
</tr>
<tr>
<td>2, upgraded pre-production H3600 unit</td>
<td>120 m(\Omega)</td>
<td>0.0012</td>
<td>38 (\mu)J</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the two prototypes. The key difference in the two prototypes is the value of the sense resistors used, which in turn, leads to different current-scaling factors (\(\alpha \)) and energy quanta values. The energy quanta was measured by running on each prototype a workload that consumed a relatively constant amount of current, and, recording this current and the period of the pulse train that was generated by the multivibrator. The energy quanta was then calculated as the product of the period, current, and the voltage at the battery terminals (4.07 V and 4.05 V respectively). The energy-quanta values shown in this table are the average values obtained using three different workloads.
Figure 2: One of our two iPAQ prototypes showing the iPAQ handheld and PCMCIA sleeve, the energy-counter PCB, and the bench supply that powers all three.

Figure 3: The wiring diagram (a) shows the energy-counter PCB and its connection to the iPAQ handheld and associated PCMCIA sleeve. The block diagram of Figure 1 is reproduced here as Figure (b) for ease of comparison.
the downstream end of the resistor R such that the current consumed by both the sleeve and the iPAQ handheld would flow through R.

To maximize the signal to noise ratio, we installed the current mirror (MAX 4172) adjacent to the sense resistor and connected its output to the energy-counter PCB. The energy-counter PCB (shown in Figure 4) contains the monostable multivibrator and the 12-bit binary counter.

The energy-counter PCB (Figure 4) is powered by the 3.3 V source (V_{dd}) generated by the iPAQ handheld and distributed to the sleeve. However, since the sleeve cannot draw more than 10 mA during sleeve initialization [5], two transistors disconnect the ICs from V_{dd} until a signal generated by the PCMCIA sleeve (pcm_vdd_on) is asserted. The 5000 pF capacitor integrates the current generated by the current mirror and conveyed to the capacitor via the signal current in. When the pre-determined amount of energy is consumed, the energy quanta, an interrupt request is signaled to the processor via int_op (GPIO 24). The user must manually connect this signal to one of the outputs of the binary counter.

4 Software

In this section, we describe the software for energy-driven statistical sampling, and the simple extension of this software that allows it to also support time-driven statistical sampling. The software runs within/on the Merlin build of PocketPC for the iPAQ.

4.1 Software Overview

The software for energy-driven statistical sampling consists of on-line software for collecting sample data, and off-line tools for processing that data. The on-line data-collection software can be divided into three components: (1) a set of kernel-level modifications, (2) a device driver, and (3) a program that enables users to control data collection via a simple GUI. The kernel-level modifications include
Figure 5: Data collection software

the addition of an interrupt service routine (ISR) for handling sampling interrupts, the reservation of memory buffers for holding sample data, and support for controlling (e.g. enabling and disabling) sampling via the device driver.

Figure 5 presents a block diagram of the data-collection software. A user enables and disables sampling via the user-level data-collection program (which issues calls to the device driver, which may in turn issue calls to the kernel). Sampling interrupts are generated only when sampling is enabled. When the kernel receives a sampling interrupt, it suspends the executable that was being executed and calls the added ISR. The ISR records a 16 B sample in a pre-allocated 64 KB RAM buffer, where each sample consists of:

PC – the program counter address of the interrupted instruction;

Module ID – a value that identifies the software module (executable or dynamically linked library) in which this instruction resides;

Executable ID – a value that identifies the interrupted executable (so that the interrupted executable can be identified even if the interrupted instruction resides in a DLL); and

Time stamp – the value in the operating system count register, which is incremented autonomously by the processor every ≈ 271 ns.

Each executable and DLL stored in ROM is identified uniquely using its readily-available table-of-contents pointer. Unfortunately, there is no corresponding identifier for executables and DLLs stored in RAM. To enable efficient identification of RAM executables, the ISR maintains (in another pre-allocated RAM buffer) a mapping from the process identifiers of sampled RAM executables to their executable names. These process identifiers are used by the ISR as the Executable ID for the samples that belong to such executables. The software does not currently, but could easily be extended to, uniquely identify RAM DLLs as well. (We did not include this functionality because the percentage of samples in RAM DLLs was insignificant during all of our benchmarks.)

A user also starts and stops data collection via the user-level data-collection program. In particular, in response to user directions, the user program issues calls to the device driver to obtain the samples recorded by the ISR – as well as the mappings from table-of-contents pointers to module names, and from process identifiers to executable names – and then writes this sample data to one or more
data files. Such data files can be processed using the data-processing tools at any subsequent time to produce various textual and graphical summaries of the sample data that was collected.

We have also extended the software to support time-driven sampling. In this mode, rather than using our energy counter to generate an aperiodic stream of sampling interrupts, we use one of the processor's operating system timers to generate a periodic stream of sampling interrupts. Thus, our time-driven sampler does not require any additional hardware. The user-level data-collection program allows a user to enable either energy-driven or time-driven sampling. It also allows a user to set the sampling frequency for time-driven sampling.

4.2 Software Implementation Details

We found that attempting to write all of the sample data to the RAM-based file system while sampling is enabled noticeably disrupted the performance of the system, and therefore the samples that were collected. Two possible approaches for addressing this problem are: 1) to decrease the amount of data written by writing only a subset or a summary of the sample data, and 2) to buffer the sample data in RAM until sample collection is stopped. The first approach loses some information. Notice, however, that some of the information that can be extracted from the sample data may not be of interest to the particular user of the sampling system. For example, if a user of the sampling tool is interested in energy consumption, but not in power consumption, then the time stamps in the samples are superfluous. The amount of data saved could also be reduced by coalescing samples (e.g. by executable ID). In order to demonstrate the different types of information that could be extracted from the sample data recorded by the ISR, we currently use the second approach of buffering sample data until sample collection is stopped.

Table 2 summarizes the modifications and additions we made to the OEM Adaptation Layer (OAL) for the iPAQ.

5 Experimental Methodology

The experimental data we present in Section 6 was obtained using our H3630-based prototype (prototype #1 in Table 1); results obtained using the other prototype were similar. Using this unit, we gathered sample data with both energy-driven and time-driven sampling for the 14 benchmarks described in Table 3. While gathering this data, the iPAQ unit was not docked to a PC. Also, the PCMCIA expansion pack was empty for all but two of the benchmarks, Idle-Conn and Download. For those two benchmarks, we plugged a Compaq WL100 11 Mbps Wireless LAN card into the PCMCIA expansion pack. Before gathering any data, we changed the default system battery setting to prevent the unit from automatically powering down. We also changed the default system backlight setting to prevent the backlight from turning on (i.e. we set the brightness level to “Power Save”) for all but two of the benchmarks, Idle-Low and Idle-Super (during which the brightness level was set to the lowest and highest on setting, respectively). We did not change any other system settings.
Modifications in the OAL to implement energy-driven and time-driven statistical sampling.

<table>
<thead>
<tr>
<th>File</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel/hal/cfwzilker.c</td>
<td>Added code to allow the sampling device driver to control whether energy/time-driven sampling is enabled or disabled.</td>
</tr>
<tr>
<td>kernel/hal/arm/int1110.c</td>
<td>Added interrupt service routine (ISR) that records a sample upon receiving a sampling interrupt.</td>
</tr>
<tr>
<td>drivers/eprof/*</td>
<td>New sampling device driver (which exports a stream interface).</td>
</tr>
<tr>
<td>drivers/dirs</td>
<td>Added statement that causes the sampling device driver to be built by the code generation tools.</td>
</tr>
<tr>
<td>inc/drv.glob.h</td>
<td>Added global variables shared by the sampling device driver and the kernel.</td>
</tr>
<tr>
<td>inc/eprof.h</td>
<td>New definitions shared by the sampling device driver and the kernel.</td>
</tr>
<tr>
<td>inc/oalintr.h</td>
<td>Added definition of an interrupt value for sampling.</td>
</tr>
<tr>
<td>files/config.bib</td>
<td>Reserved a fixed 64 KB RAM buffer in which the sampling ISR records samples.</td>
</tr>
<tr>
<td>files/eprofgui.exe</td>
<td>New program via which users can control sampling.</td>
</tr>
<tr>
<td>files/platform.bib</td>
<td>Added entries so that sampling device driver and user-level program would be included in iPAQ PocketPC build.</td>
</tr>
<tr>
<td>files/platform.reg</td>
<td>Added entries so that sampling device driver would be included as a built-in driver.</td>
</tr>
</tbody>
</table>

Table 2: Modifications in the OAL to implement energy-driven and time-driven statistical sampling.

Sample Collection

In our experiments, as discussed in Section 4.2, the user-level data-collection program buffered all sample data in memory until profiling was stopped in order to retain all the sample data without incurring excessive overhead. In our energy-driven sampling experiments, we used an energy quanta of 2.94 mJ. As shown in Table 4, this quanta resulted in average sampling frequencies of between 93 and 535 Hz. For our time-driven sampling experiments, we used an average sampling frequency of 247 Hz for Record and Download and 349 Hz for all other benchmarks. As further discussed in Section A.2, this energy quanta and these sampling frequencies were small enough to ensure that sufficient samples were collected during each of our benchmarks, but large enough to avoid noticeably perturbing the collected sample data. For our benchmarks, they resulted in a maximum average data collection rate of approximately 8 KB/second, and a peak data collection rate of approximately 10 KB/second. During our benchmarks, new sample data is copied into the data-collection program's
Table 3: Benchmarks and their run time.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Description</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>Idle</td>
<td>–</td>
</tr>
<tr>
<td>Idle-Low</td>
<td>Idle with brightness level set to "Low Bright"</td>
<td>–</td>
</tr>
<tr>
<td>Idle-Super</td>
<td>Idle with brightness level set to "Super Bright"</td>
<td>–</td>
</tr>
<tr>
<td>Idle-Conn</td>
<td>Idle with wireless card</td>
<td>–</td>
</tr>
<tr>
<td>CPU-cached</td>
<td>Dummy CPU application that repeatedly updates a cached integer variable</td>
<td>34</td>
</tr>
<tr>
<td>CPU-uncached</td>
<td>Dummy CPU application that accesses a large uncached array</td>
<td>40</td>
</tr>
<tr>
<td>Music</td>
<td>Use Windows Media Player to play an MP3 file</td>
<td>66</td>
</tr>
<tr>
<td>Music-Silent</td>
<td>Use Windows Media Player to play the MP3 file without producing sound</td>
<td>65</td>
</tr>
<tr>
<td>Music-Loudest</td>
<td>Use Windows Media Player to play the MP3 file at the loudest volume setting</td>
<td>65</td>
</tr>
<tr>
<td>Movie</td>
<td>Use Windows Media Player to play a WMV file</td>
<td>110</td>
</tr>
<tr>
<td>Record</td>
<td>Record the MP3 file played from another machine</td>
<td>65</td>
</tr>
<tr>
<td>Game</td>
<td>Play Christmas Rush, a multimedia game</td>
<td>54</td>
</tr>
<tr>
<td>Download</td>
<td>Use Pocket Internet Explorer and wireless card to download an uncached web page that contains many JPEG images</td>
<td>35</td>
</tr>
<tr>
<td>CPU-cached+Game</td>
<td>The CPU-cached benchmark followed by the Game benchmark</td>
<td>84</td>
</tr>
</tbody>
</table>

user-level buffer (and the data-collection program is awakened) at most once every 1024 samples.

6 Results

Energy-driven statistical sampling can be used to measure the average power consumption and to obtain temporal profiles or histograms of power consumption. It can also be used to measure total energy consumption and extract energy profiles that attribute that energy consumption to the software executed during the sampling period. In this section, we illustrate these uses for energy-driven sampling and the insights they provide. We also compare the results that can be obtained through energy-driven statistical sampling to those that can be obtained through time-driven statistical sampling, which has the advantage of requiring no additional hardware support.

6.1 Power consumption

Energy-driven statistical sampling can be used to measure and compare the base power consumption of the system in various modes (e.g. idle with the backlight powered at various intensities). Specifically, the power consumption in some mode can be calculated as the product of the energy quanta
Table 4: Average sampling frequency, corresponding average power consumption, number of samples, and percentage of samples attributed to the OEMIdle routine for each of our benchmarks. Average power consumption is the product of average sample frequency and the energy quanta, 2.94 mJ.

and the average sampling frequency in that mode. Further the relative sampling frequency in two modes indicates the relative power consumption of those modes. Table 4 presents the average power consumption for our benchmarks.

Column 1 of the table shows the average sampling frequency during each of our benchmarks, while column 2 provides the corresponding average power consumption. Observe that, for example, idling with the backlight on at its lowest setting (Idle-Low) causes the unit to consume 2.7 times the power of idling with the backlight off (Idle). Alternatively, idling with the backlight off and the wireless card inserted (Idle-Conn) causes the system to consume almost as much power as idling with the backlight on at its highest setting without the wireless card (Idle-Super). In contrast, changing the speaker volume at which an MP3 file is played from the lowest setting (Music-Silent) to the highest setting (Music-Loudest) offered by Windows Media Player increased the system’s power consumption by only 17%.

Average power consumption figures, such as those given in Column 2, do not reveal the variation in power consumption during a benchmark. However, since the energy consumed between the occurrence of any two interrupts (samples) is constant, the average power consumed during the interval between the two samples is simply the energy quanta divided by the time since the last sample. Therefore, energy-driven statistical sampling can also provide temporal profiles and histograms of power consumption.
6.1.1 Temporal Power-Consumption Profiles

Figures 6 and 7 show temporal profiles of power consumption for a representative subset of our benchmarks. In each graph, the samples are ordered in time sequence along the x-axis, and the corresponding power consumption values are plotted on the y-axis. In order to show details that are obscured when data points are spaced very closely, Figure 6 includes a close-up of a portion of the temporal profile for the Music benchmark.

Spikes or shifts in temporal profiles can be correlated with events that occur during a benchmark. For example, the noisy interval at the beginning and end of the temporal profiles of many of the benchmarks corresponds to touch screen navigation to start up and terminate the benchmark application, while the CPU-intensive benchmarks experience a downward shift in power consumption when the audio system times out and powers itself down\(^1\). In addition, the Download benchmark experiences downward spikes in power consumption which correspond to times during which the iPAQ is simply waiting to receive more data, while the shift from lower to higher power consumption during the sequential CPU-cached + Game benchmark corresponds to the transition between running CPU-cached and running Game. The detail of the temporal profile for the Music benchmark reveals the granularity at which the CPU alternates between idle and busy times while playing an MP3 file. During most of the benchmarks, however, sampling intervals corresponding to lower and higher power consumption are interspersed very finely, indicating that those benchmarks do not contain distinct phases in which they operate at different power consumption levels.

The temporal profiles also reveal that, unsurprisingly, power varies the least for the benchmarks that contain the least amount of variation in activity (i.e. the idle and CPU-intensive benchmarks). The temporal profiles of all the other benchmarks show frequent incidence of power consumption at substantially different levels.

As another example of the insight that temporal profiles provide, we investigated how power and energy consumption change depending on whether a program is stored compressed in the RAM file system, compressed in ROM, or uncompressed in ROM. In the first two cases, the program is uncompressed and paged into RAM when executed; in the latter case, the program is executed directly out of ROM. We used two benchmarks: 1) executing a contrived CPU-intensive program which consists of a loop of simple arithmetic operations that does not fit in the processor's instruction cache and 2) playing an MP3 file that is stored in RAM with Windows Media Player. For the execute-in-place case of the second benchmark, we use the default compression settings in the Merlin iPAQ build, which specify that the resources should be compressed in ROM (and therefore decompressed and copied into RAM before use).

For the uncacheable benchmark, Figure 8(a) shows the temporal power-consumption profiles, and Figure 8(b) shows total time and energy consumption, for all three cases. These results show that, when executing out of ROM, this program takes much more time to complete, but consumes much less power. The decrease in power consumption is not sufficient to offset the increase in time, however, so that executing this program out of ROM consumes more energy. For the music playback benchmark, however, the average power, total time and total energy consumption are basically the same.

\(^1\)The audio system is powered at the beginning of all the benchmarks except the idle benchmarks because the system emits some beeps during touch screen navigation to start up the benchmark applications.
Figure 6: Temporal profiles of power consumption (figure 1 of 2)
Figure 7: Temporal profiles of power consumption (Figure 2 of 2)
Figure 8: Impact on power and energy consumption of storing an executable compressed in either the RAM file system or ROM, so that it is uncompressed into and executed out of RAM, or storing it uncompressed in ROM so that it executes in place.

same for all three cases. This reflects the fact that, relative to the prior benchmark, the instruction cache hit rate is much higher and instruction fetch is a much smaller component of the benchmark’s power consumption. From these results, it is clear that, for many applications, execute-in-place would save memory without increasing energy consumption. On the other hand, the slower access time of ROM could appreciably increase the latency and/or energy consumption of some applications that have high instruction cache miss rates.

6.1.2 Power-Consumption Histograms

Power-consumption histograms are useful for understanding the power levels during a benchmark. Figures 9 and 10 present power-consumption histograms for a representative subset of our benchmarks. In each histogram, the point \((x, y)\) indicates that, for \(y\%\) of the samples that were collected, the average power consumed by the system during the preceding inter-sample interval was \(x\) W. For clarity, the power values are grouped into 50 mW buckets.

The power-consumption histogram for the Idle benchmark shows that there is a single dominant power level while the system is idling. This is not surprising given that the temporal power-consumption profiles for the Idle benchmark shows that the system consumes a relatively constant amount of power while idling. The histogram for the Game benchmark also contains a single peak. However, the peak is wider, indicating that a range of power levels is exercised during the Game benchmark. Finally, the histograms for all the other benchmarks show two significant peaks, indicating that there are two significant power levels during each of these benchmarks.

The main power level during the CPU-cached and CPU-uncached benchmarks corresponds
Figure 9: Power-consumption histograms (figure 1 of 2)
Figure 10: Power-consumption histograms (figure 2 of 2)
to the power consumption after the audio system timed out and powered down. The higher, secondary power level corresponds to the power consumption while the audio system was powered. The two peaks in the power-consumption histogram for the sequential CPU-cached + Game benchmark correspond to the peaks in the histograms of the individual benchmarks. Finally, to explicate the bi-modal nature of the remaining power-consumption histograms, Column 4 of Table 4 shows the percentage of samples attributed to the OEMIdle routine for each benchmark. For each benchmark, this percentage is an estimate of the percentage of energy that was consumed while the CPU was idling during that benchmark. Notice that the system tends to consume much less power when the CPU is idle than busy (as indicated by the power consumption figures in Column 2 of Table 4). Consequently, it is not surprising that there would be two separate peaks in the histogram of every benchmark that consumed a substantial percentage of energy while the CPU was idling as well as a substantial percentage of energy while the CPU was not idling. Moreover, it is not surprising that the lower peak should be less pronounced for the benchmarks that consumed a smaller percentage of energy while the CPU was idling.

Notice that the lower peak in each of the bi-modal histograms for the single-application benchmarks corresponds to a higher power level than the dominant power level during the Idle benchmark. There are several possible reasons for this difference. One hypothesis is that the periods of time during which the CPU is busy are so finely interspersed with those during which it is idle that the CPU will have been busy for some percentage of the time between any two samples. A second hypothesis is that, when the CPU is idle, the system is not necessarily idle, and the power consumed by such “asynchronous” system activity is responsible for the increased power level.

To investigate this latter hypothesis, we modified the OAL such that we could disable the audio system (by powering down the speaker and audio codec, and eliminating DMA to the audio subsys-
tem) and/or the LCD subsystem (by eliminating LCD refresh and DMA to the LCD subsystem). We then experimented with disabling these subsystem while running the multimedia benchmarks. Our experiments validated this hypothesis. For example, Figure 11(a) shows power-consumption histograms for the Music benchmark when the audio subsystem was enabled or disabled. Disabling the audio subsystem shifted the power consumption histogram such that the lower mode is at the dominant power level of an idle system.

From Figure 11(a) we can also gain some insight into the characteristics of this asynchronous power consumption. In particular, note that the two peaks become more pronounced when the audio subsystem is disabled. This indicates that there was some variation in the asynchronous power consumption of the audio subsystem. This variation can obscure differences in synchronous power consumption. For example, Figure 11(b) shows power histograms for a game benchmark (that uses the same game as the Game benchmark, but runs for a longer duration) when the audio and LCD subsystems were either both enabled or both disabled. Notice that, with the audio and LCD subsystems disabled, the power histogram suggests a second, smaller peak at approximately 1.2 W.

Finally, leveraging this ability to power down the LCD subsystems, we found that the LCD subsystem consumes about 120 mW when the system is idle. In other words, LCD refresh is responsible for 44% of the power that is consumed when the system is idle with the backlight off and the expansion pack empty.

6.2 Energy consumption

Energy-driven statistical sampling can also be used to develop insights into energy consumption. For example, the energy consumed to perform a task can be calculated as the product of the energy quanta and the number of samples recorded while performing that task. Further, the relative number of samples that are recorded while performing different tasks are indicative of their relative energy consumption. Column 3 of Table 4 shows the number of samples for each of the benchmarks that involved a particular task. From these figures, it can be seen that, for example, playing a particular MP3 file at the default volume consumed 1.6 times as much energy as recording that music (played from a separate system) with the default microphone settings.

Energy-driven statistical sampling can also be used to extract energy profiles that apportion the energy consumed to the software executed while the samples were collected. Specifically, since the rate at which sampling interrupts occur is proportional to the rate at which energy is being consumed, the percentage of samples attributed to some software is an estimate of the percentage of energy consumed while executing that software.

Energy profiles can be extracted at different granularities. Instruction-level profiles can be prepared by coalescing the samples attributed to each unique static instruction, while procedure-level profiles can be prepared by coalescing the samples of all instructions in a given procedure. Such profiles can be leveraged by application developers and system designers to direct their optimization efforts more effectively. Module-level and executable-level profiles can be similarly obtained – the latter could be leveraged by users of a system to understand how they are using up the charge stored in the battery.

Given that energy-driven statistical sampling requires a small amount of hardware support that is not provided by most current systems, one question that warrants investigation is to what degree
duration can serve as an approximation for energy consumption. To help answer this question, the rest of this section compares energy and time profiles.

6.2.1 Procedure-level Profiles

Figure 12 presents the procedure-level time and energy profiles for eight of our benchmarks. For each benchmark, the time and energy profiles individually identify all the procedures and modules to which 10% or more of the samples were attributed within either profile. All other procedures and modules are combined in “Other”. Procedures whose names were stripped from their binary are named as UNKNOWN_<starting_address>_<size>. Finally, the procedures and modules in each graph are ordered according to the number of samples that time profiling attributed to that procedure/module, so that it is easy to detect when energy profiling reveals a different ordering.

Time and energy profiles differ if the profiled workload exercises multiple, distinct power levels, which, as discussed in Section 6.1.2, is true for many of our benchmarks. For example, observe that, for the benchmarks that spend a lot of time with the CPU idle, the idle routine component of the time profile (i.e. OEMIdle) is much larger than the corresponding component of the energy profile. Similarly, the profiles for CPU-cached+Game show differences in the proportion of time and energy spent in the two executables. In particular, since time profiling is oblivious to the fact that Game consumes energy at a much higher rate than CPU-cached, time profiling greatly underestimates the relative energy consumption of playing the game.

If the profiled execution contains only a single dominant power level, however, time and energy profiles will not differ substantially. This is demonstrated by the similarity of the time and energy profiles for the Game and Download benchmarks. It is also demonstrated by the similarity of the time and energy profiles of all of the benchmarks except CPU-cached+Game if the samples attributed to the OEMIdle routine are ignored, as shown in Figure 13.

6.2.2 Discussion

The similarity in most of the profiles once the OEMIdle samples are ignored is an artifact of the current-generation iPAQ platform. In particular, with the exception of cache misses, all instructions consume approximately the same amount of power [10]. The difference in power consumption due to cache misses is substantial, as illustrated by the histograms for the CPU-cached and CPU-uncached benchmarks in Figure 9. However, most procedures include a mixture of instructions and, as discussed in Section 6.1.2, the power consumed by background activity represents a noteworthy fraction of the overall power consumption. As a result, the higher power consumption of instructions that cause cache misses is usually not sufficient to create a substantial difference between time and energy profiles.

Thus, the current platform exhibits only two processor-provided power states – CPU idle and CPU non-idle – that frequently result in differences between time and energy profiles. Therefore, time-driven statistical sampling can usually be used to approximate energy-driven statistical sampling by ignoring the samples attributed to the OEMIdle routine. This conclusion, however, would not necessarily apply to a system that offered the ability to dynamically and quickly change the speed at which the processor runs. Such frequency changes would introduce other power states. Furthermore,
Figure 12: Summarized procedure-level time and energy profiles.
Figure 13: Summarized time and energy profiles, excluding samples attributed to the OEMIdle routine (i.e., while the CPU was idle).
future-generation processors that support voltage scaling in addition to frequency scaling are likely to display even greater variance in power states.

The impact that frequency and voltage scaling may have is suggested by the following two experiments. These two experiments were performed on a prototype we built using the Itsy Pocket Computer [3]. In the first experiment, we obtained time and energy profiles for a workload consisting of running a long benchmark twice, first at a clock frequency of 206 MHz, then at a clock frequency of 59 MHz. In the second experiment, we obtained time and energy profiles for a workload consisting of running a short benchmark six times, each time with a different clock frequency (206 MHz, 176 MHz, 148 MHz, 118 MHz, 89 MHz and 59 MHz). Table 5 summarizes the results of these two experiments. While these workloads are synthetic, the results indicate the inappropriateness of time profiles for estimating the energy consumption of applications that exploit frequency scaling.

7 Summary and Future Work

While the issues with designing applications to reduce execution time are fairly well understood, a similar understanding of how to design applications to reduce their energy consumption is lacking. This report presented a new approach, energy-driven statistical sampling, that exposes information about energy consumption. Energy-driven statistical sampling tools can help developers both reason about the energy impact of software design decisions and identify application energy hot spots.

Energy-driven statistical sampling uses a small amount of hardware to trigger an interrupt at pre-defined quanta of energy consumption. The interrupt is used to collect information about the program currently executing, and the information thus collected is processed off-line to generate an energy profile of where energy was spent during the program's execution. Sample summaries may also be generated that offer developers insight into the temporal power profile of the workload and the power states that it exercises. We have developed a prototype of this approach for the iPAQ handheld and have presented in this report some of the insights we gathered with it. Our studies of this prototype and the one we built for the Itsy pocket computer [3] indicate that energy-driven statistical sampling can provide an accurate system-level software energy profile with very little dynamic overhead or hardware cost.

For the iPAQ prototype, we have compared energy-driven statistical sampling to time-driven stat-
istical sampling by comparing the profiles generated by these approaches for 14 benchmarks programs. Our results show that there are often significant differences between the profiles generated by energy- and time-driven statistical sampling when the workload cycles through multiple power states. On simple handheld systems, such as current-generation iPAQ handhelds, many applications may exercise only a single power state other than idle mode. In such cases, time profiling should sufficiently approximate energy profiling for the purpose of assisting programmers. However, preliminary investigations indicate that emerging functionality, like frequency and voltage scaling, will increase the differences between time and energy profiles, and therefore the benefit of energy-driven statistical sampling.

A Sources of Error

In this appendix, we discuss the sources of error in our energy-driving profiling approach. Broadly, the sources of error can be classified into two categories: (i) energy measurement related, and (ii) attribution and analysis related. The rest of this section discusses each of these in detail.

A.1 Measurement-related Errors

We begin our discussion of measurement-related errors with a discussion in Section A.1.1 of an error relating to battery-terminal voltage variation, and follow with a discussion of other errors in Section A.1.2.

A.1.1 Battery-terminal Voltage Variations

Energy-driven profiling operates on the assumption that each interrupt signifies that the iPAQ handheld has consumed a fixed amount of energy. Since our energy counter integrates only the current being drawn by the iPAQ handheld, an equivalent assumption is that each interrupt signifies that a fixed amount of charge has been consumed. For an iPAQ handheld, the degree to which this latter assumption holds depends on the degree to which the battery-terminal voltage varies.

To examine this relationship, for a range of battery-terminal voltages, we measured the current drawn by one of our prototypes as it ran two workloads, each of which consumed a (relatively) constant amount of power. Figure 14 presents the results of these experiments. Observe that there is an inverse relationship between supply current and power consumption – in particular, the current increases by approximately 10%, while the power consumption decreases by approximately 3%, as the battery-terminal voltage drops from 4.2 V to 3.8 V. We hypothesize that these relationships exists because: (1) for a workload consuming constant power, as the battery-terminal voltage drops, the current drawn must increase, and (2) as the battery-terminal voltage drops, an iPAQ handheld appears to become more energy-efficient, and thus, the power consumption decreases.

The dependence on battery-terminal voltage can be ignored if (1) the battery-terminal voltage is held (essentially) constant, and (2) if the user of the profiler is interested only in comparing the relative energy cost of applications. If the first requirement is satisfied, then each interrupt will correspond to a fixed amount of energy. If the second requirement is true, then the user may safely ignored the
Figure 14: Current draw and power consumption as a function of supply voltage for iPAQ prototype #2 while the iPAQ was displaying the initial PocketPC “start” screen. (a) shows the relationship with the backlight off, while (b) shows the relationship with the backlight on at its highest setting and the WL100 802.11b card powered but with no driver loaded. Similar data was obtained with the other prototype and other scenarios.

exact value of the battery-terminal voltage since he/she does not need to know the value of the energy quanta. If, on the other hand, the user requires the value of the energy quanta, then an experiment, such as described in the caption of Table 1, must be done at each battery voltage of interest.

For our prototype, which uses a bench power supply, the battery-terminal voltage is sufficiently constant. The battery-terminal voltage is affected by two components: the regulation of the bench supply and the voltage drop across the fuse and sense resistor (see Figure 3(a)). The second component is the most significant since our bench supply is well-regulated. The impact of this component can be estimated by computing the relative increase in the number of samples attributed to a workload that occurs with decreasing battery voltage. This increase, S, is given by Equation 3, where P is the power the workload consumes at the nominal operating point, ΔP is the change in power consumption due to a decrease in battery voltage, while I and ΔI are the comparable quantities for current.

$$ S = 100 \times \left(\frac{P - \Delta P}{P} \times \frac{I + \Delta I}{I} - 1 \right) $$

To quantify the increase in the number of samples due to decreasing battery voltage, we determined experimentally that the voltage drop across the fuse and sense resistor was at most 140 mV for a workload with a power consumption similar to the one used for Figure 14(b). Linear interpolation of the data shown in this figure gives $\Delta P = 14.04$ mW and $\Delta I = 9.8$ mA, and thus, from Equation 3, we get $S = 1.6\%$. This error is well within the margin of error of our approach.

If the iPAQ were powered by a battery rather than a bench supply, it may be important to explicitly account for the current-power relationship. One possibility would be to characterize the current-power relationship of the iPAQ, and then, using periodic sampling of the battery voltage, dynamically change
the amount of energy that must be consumed before an interrupt is generated. Figure 15 illustrates how the basic energy-counter design can be modified to provide this functionality. As shown by the use of bold in the figure, we replace the 12-bit binary counter with a preloadable count-down counter, connect its zero-detect signal to one of the processor's GPIOs, and map the counter into the memory space of the processor. The interrupt service routine used for profiling can then be modified so that, on servicing each interrupt, it writes a new count into the counter. Since this count is decremented each time the iPAQ consumes a minimum quanta of energy (see page 5), the software can change the amount of energy associated with an interrupt (the energy quanta) in steps equal to the minimum energy quanta.

A.1.2 Other Measurement-related Errors

A second measurement-related error is the inherent non-ideal characteristics of electrical components. Of particular note is the time required for the multivibrator to discharge the capacitor, which we determined empirically to be approximately 300 ns. For our benchmarks, the total time spent during such discharges of the capacitor represents a very small fraction of each benchmark's run time. The other component-related errors are also negligible due to careful selection of components and operating ranges.

A third measurement-related error arises from the energy counter measuring the energy being consumed by some of the components (monostable vibrator and the binary counter, Figure 1) of which it is built. However, in practice, these components consume a negligible amount of energy compared to that consumed by the iPAQ.

Finally, a fourth source of error is the degree to which the time-/energy-driven sampling software perturbs the resulting energy profiles. An estimate of this error is the percentage of samples attributed to executing the data-collection program. In our experiments, this percentage was 0.11% or less for energy profiling, and 0.13% or less for time profiling. Although the interrupt service routine cannot be profiled, we can measure the time spent in the routine. For time-driven sampling, the percentage of the total run time spent in the interrupt service routine is an estimate of the error it induces in the resulting time profiles. In our experiments, this percentage was 0.48% or less.
For energy-driven sampling, to estimate the error that the interrupt service routine induces in the resulting energy profiles, we first estimate the number of samples that would have been attributed to the routine, and then express this estimate as a percentage of the total number of samples. We estimate the number of samples that would have been attributed to the interrupt service handling routine by assuming that the average power consumption while executing the routine is approximately the same as during the initial portion of the CPU-uncached benchmark (i.e. before the audio system was powered down) since, as with the interrupt service routine, this benchmark is memory-intensive, does not include any idling, and does not use any devices. (We use the average power consumption while the audio system was powered because executing the interrupt service routine will not cause the audio system to be powered down if it is already powered.) For the Download benchmark, we adjust the assumed power consumption of the interrupt service routine by the increase in average power consumption due to the wireless card (i.e. the difference between the average power consumption of Idle and Idle-Conn). Using this process, we estimate that the percentage of samples that would have been attributed to the interrupt sampling routine is 0.70% or less for all of our benchmarks. We have not estimated the error induced by calls to the sampling device driver because, with only the information currently recorded in each sample, the corresponding samples cannot be distinguished from samples due to other work performed by the device manager. However, experiments on the Itsy suggest that this error will also be very small.

A.2 Attribution Error

To accurately attribute a sample to an instruction, it is important to minimize the delay between the following two events: the monostable multivibrator generating a pulse P that will cause bit q of the binary counter to be asserted (see Section 3.1), and the interruption of the program in execution so that the interrupt can be serviced. This delay is composed of the time required for the interrupt to be conveyed to the processor core, and the time required for the processor to begin servicing the interrupt. For our prototype, the first component is on the order of nano-seconds, and is thus a small fraction of the time between interrupts, which is on the order of milliseconds. Given that the power consumed during such small time intervals does not vary significantly, the first component's impact is a marginal variation in the energy quanta.

Regarding the second component, deferred interrupt handling could incur delay in some specific situations (because the processor is handling a higher priority interrupt, for example), but such situations occur infrequently. In addition, the iPAQ uses a StrongARM SA1110 processor. Based on our analysis of the SA1100 processor, which we believe uses the same core as the SA1110, one characteristic of this processor is that, before servicing a trap or exception, the processor first completes execution of all instructions in the decode and later pipeline stages. Thus, when the energy-counter interrupt is processed, the sample will be attributed to the instruction that was fetched after the instruction that was in execution at the time that the interrupt was delivered to the core. Detailed information about instruction delays, pipeline scheduling rules and interrupt handling on the SA1110 processor could be leveraged to adjust for this processor-induced skew in attribution.

A second source of error arises if phases of the application being profiled are synchronized exactly with the discharging of the capacitor. While we believe that this source of error is not likely to be exercised by applications, it may be guarded against by modifying the energy counter as suggested...
in Section A.1.1 to allow the value of the binary counter to be written by software. With this modification, the energy quanta could be jittered by the interrupt service routine about some mean value. Our time-driven sampler trivially supports the ability to jitter its sampling frequency; in particular, during each interrupt, the time till the next sample was set to a random value within a small range such that the sampling frequency varied between 283 and 310 Hz during our Record and Download benchmarks, and between 328 and 367 Hz during all of the other benchmarks.

Finally, a third source of error concerns sensitivity to the sampling rate. The accuracy with which a sample distribution reflects the true allocation of energy consumption for an application is proportional to the square root of the number of samples [6]. However, larger number of samples can lead to greater processing overhead and increased profiler intrusiveness. We performed sensitivity experiments in which we lowered the energy quanta to as little as 92 μJ, thereby increasing the number of samples by a factor of 32. We did not observe any significant difference in the procedure-level profiles.

References

